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1
Introduction

Personality goes a long way
Jules Winnfield, Pulp Fiction (1994)

1.1 Information

1.1.1 The Early Days

The ability to exchange information among individuals has proven to be one of the
most advantageous milestones in the evolution of the human race. The communica-
tion skills acquired over the ages have helped us to discover nutritious food sources,
alert each other to threats and to collaborate in general. One of the earliest steps in
the improvement of communication efficiency has been the development of speech.
The difficulty to determine the exact origin of speech [77] however illustrates the
problem of this communication method. Information transferred by speech is solely
stored in the minds of individuals. Therefore, access to valuable information was
limited to someone’s social circle and much of the knowledge that was acquired di-
luted over time due to the limited capacity of human memory. When people started
to collaborate more intensively, a method had to be devised that would enable the
conversion from a concept stored in human minds to a more reliable and expandable
platform.

Around the 4th millennium B.C. in Mesopotamia, formerly individual farmer com-
munities started to group together in larger settlements. With fast growing inhabitant
numbers and flourishing markets, these civic areas became increasingly difficult to
manage. It is commonly believed that in this time the script that previously existed of
simple drawings developed into a more complex system that enabled the registration
of trading transactions and other administrative information. Inscribed in clay tables
this information could easily be stored, retrieved and transported [82].

Only with hindsight we completely understand the ramifications of these events.
The ability to store information on tablets allowed for practically unlimited capacity
and perhaps even more importantly, the decoupling of information from the human
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mind. Information could be transferred independently from the writer, and the knowl-
edge could be reconstructed in a different time and location.

It was soon realised that writing provided a great stimulus to the economic growth
of the society, and so the following ages are packed with inventions that facilitated
more complex language structures and more practical writing material. Not only was
writing used to store administrative information, but long told stories that were up
to now only transferred by oral history could finally be stored to stand the ravages of
time. The rapid increase of stored information led to the emergence of great libraries
in large cities and cloisters. A massive storage of information however, does not
directly breed knowledge. Only when information can be effectively disseminated to
the community, will knowledge be able to emerge and bloom.

In the 3rd century B.C. one of these massive libraries was located in Alexandria,
a fast growing Egyptian city founded by Alexander the Great. The poet, teacher and
scientist Callimachus was appointed as librarian and noted that a system needed to
be developed to order the numerous scrolls in the library. Around 245 B.C. he started
a massive effort to organize the library by authors and subjects. The complete cata-
logue or pinakes (tables), finished after the death of Callimachus, allegedly spanned
about 120 volumes, and was a great source for Greek literary research in the years to
come [38].

Retrieval of information from a manually indexed library results either in total
recall, the retrieval of all available information on the requested topic, or a ranking
based on the opinion of the librarian. In 1755 Diderot noted that even with extensive
cataloguing the increase in information would eventually break the system:

“As long as the centuries continue to unfold, the number of books will grow
continually, and one can predict that a time will come when it will be almost
as difficult to learn anything from books as from the direct study of the whole
universe. It will be almost as convenient to search for some bit of truth con-
cealed in nature as it will be to find it hidden away in an immense multitude
of bound volumes. When that time comes, a project, until then neglected
because the need for it was not felt, will have to be undertaken.” [32]

Diderot proposed to use Encyclopedia as a vast compendium which would bring to-
gether and systematize all knowledge worth reading. Indeed the encyclopedia would
prove its value, but we will see that indexing the full corpus of written information
would remain possible for far longer than expected.

1.1.2 Faithful Servants

At the end of the 19th century the Belgian Paul Otlet saw that radical rethinking of
information management was needed if the collective world knowledge would con-
tinue to move forward at its current pace. His vision was that libraries needed to be
transformed into stations in an information network reaching around the world. New
documentary techniques should provide fast and effective consultation. In this way,
the network of offices would form a mechanical, collective brain. Otlet even imagined
that the work-desk of the future might consist only of a screen and a telephone to
request documents. A telereading machine would allow text to be read at a distance
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from one of the offices. So that, “in his armchair, anyone would be able to contemplate
the whole of creation or particular parts of it” [97].

In 1895, Otlet met Henri La Fontaine and together they started to build the first
of these great information databases that would later be renamed to Mundaneum in
Brussels. This would be the central storage place where all original documents were
stored and which provided copies to the other offices. By the outbreak of the war in
1914, over 11 million entries were recorded in the database and the Universal Decimal
Classification was invented as a highly effective organisation scheme. Otlet set up a
fee-based service sometimes referred to as an analogue search engine to answer ques-
tions by mail, by sending the requesters copies of the relevant index cards for each
query. By 1912, this service responded to over 1,500 queries a year. Unfortunately, all
the effort invested in the system would be in vain. Management issues and disputes
with the government led to the a closing of the Mundaneum in 1934. The destructive
effect of Second World War and Otlet’s death in 1944 meant that many of his ideas
and effort were never passed on to future generations [97].

Around the Second World War, the American inventor Vannevar Bush who had
previously worked on the design of one of the earliest large scale analogue computers,
was director at the U.S. Office of Science Research and Development. Recognising the
massive amount of data that was generated by administrative reports and scientific
research, he published the article As we may think in which he proposed a hypothetical
solution that shared many similarities to the vision of Otlet:

“Consider a future device for individual use, which is a sort of mechanized
private file and library. It needs a name, and to coin one at random, “memex”
will do. A memex is a device in which an individual stores all his books,
records, and communications, and which is mechanized so that it may be
consulted with exceeding speed and flexibility. It is an enlarged intimate
supplement to his memory.” [13]

The proposed implementation came in the appearance of a desk with several but-
tons and levers and a translucent screen on which material would be projected. The
content was stored on microfilm (allowing the storage of millions of books in the
desk) and the mechanism inside the desk presented the requested documents on the
screen. Based on the associative behaviour of human thought, Bush imagined that
the machine should allow the user to make associative trails between the documents.
These trails would enable instant retrieval of a related document to the one currently
read by the user. It is unclear whether Bush was aware of the similarity of his ideas
to the vision that was put forward by Otlet, but both ideas clearly contained many
of the characteristics currently found in a personal computer and a cross referencing
scheme that would later be one of the fundamentals of the World Wide Web.

In 1949, the Italian Jesuit priest Father Roberto Busa started a less futuristic
but immense task of creating an index verborum of all the words in the works of
St. Thomas Aquinas and related authors. In total these works contained about 11
million words in medieval Latin and instead of indexing all words as they appeared in
the text, Father Busa had decided to produce a lemmatised version, where all inflec-
tions of the words are grouped into a single term. The invention of a machine com-
monly referred to as computer came to the attention of Father Busa, who turned to
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Thomas J. Watson at IBM in search of support. Using punched cards to read the texts,
the lemmatisation of the entire corpus was completed in a semiautomatic way while
human employees dealt with word forms that the program could not handle [56].

In the same year, Sanford V. Larkey proposed to study the extend to which ma-
chines could be used to index and retrieve the scientific publications stored at the
Welch Medical Library:

“The use of machine methods may appear somewhat Utopian but one must
look to the possibilities of the future. . . . Machines can probably be designed
to do what we desire but it must be determined how well they do it and if it
is worth doing.” [73]

The final report of the project lists many possible applications of machines in infor-
mation indexing and retrieval. Also, a suggestion is made for a central information
center for all science, that would have complete coverage of all important scientific
literature. It is however acknowledged that with the machines available back then
the best result would be retrieval of a bibliographical reference instead of the origi-
nal documents [55]. But even before computers could actually store large document
corpora, significant steps would be made on the performance of retrieval systems.

Many of the foundations of modern information retrieval can be found in the
SMART (Salton’s Magic Automatic Retriever of Text) information retrieval system,
developed at Cornell University in the 1960s by Gerard Salton and his colleagues.
Although reading documents was still cumbersome and involved passing the docu-
ments on tape through the computer for each search1, much of the theory that was
later detailed in Salton’s book A Theory of Indexing was proposed to generate a sta-
tistical relevance ranking of the available documents [109]. No longer would the
opinion of a librarian determine the order of the retrieved information, but a sta-
tistical ranking objectively derived from the data could be presented to the user. In
the following years, computers were enriched with hard drives, storage capacities
continued to grow, and many libraries were equipped with retrieval systems.

Although collections could now easily be searched, the information was still only
accessible to someone physically interacting with the computer. For collaboration,
information needed to be transported to other computers on disks. The first ideas
about a network to exchange content between computers are commonly credited to
J.C.R. Licklider, from 1962 the head of the Information Processing Techniques Office
(IPTO) at ARPA, the United States Department of Defense Advanced Research Projects
Agency.

Licklider envisioned that everyday work could be made much more efficient by
stimulating the Man Computer Symbiosis and collaboration could be improved by
connecting the computers of different researchers in a network. Several years af-
ter Licklider left ARPA his ideas would result in the creation of ARPANET, a packet
switching network that would later evolve into the Internet as we currently know
it [75].

In 1980, Tim Berners-Lee at CERN (the European Organization for Nuclear Re-
search) proposed a project based on hypertext which enabled access to documents

1http://blog.tomevslin.com/2006/01/search down mem.html, June 2010
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stored at a remote location. By combining this work with the Internet in 1989 the
World Wide Web was created, a framework that aimed to enable a universal linked
information system [10].

By allowing documents to refer to each other on the Internet, it became much
easier to retrieve information from remote sites. Not only for users, but computers
could also use the hyperlink structure to learn about the web. Using web-crawlers
the content of the Internet could automatically be collected and indexed by search
engines [115]. With the proposal of new ranking algorithms like HITS [70] and
Pagerank [99], a global prior ranking of the relevance of all available content on the
WWW could be made. Web search engines became more effective and would soon be
the mainstream method for searching information.

In 1999, DiNucci coined the term Web2.0 for the transformation of the known
Internet to a more dynamic variant. The web should be the “ether through which
interactivity happens” [33]. This change of the Internet would appear not as a sin-
gle invention, but several gradual changes to the implementation and perception of
websites.

One of the prominent changes was that web designers started to crosslink almost
everything on the page; next to links between different documents, it became possible
to navigate from content to users and even between users. Websites were transformed
in social media where people could share information and easily access and discuss
each other’s contributions.

For the retrieval of this content, traditional indexing methods did not suffice. Soon
the volumes of provided content became too numerous even for a large team of librar-
ians to annotate and categorise, and for contributions containing multimedia content,
automated text based methods could not come to a rescue this time. The solution to
disclose the growing media repositories would be found in the collaboration of the
community. Interfaces were developed that allowed everyone to assist in the indexing
or annotation of the provided content. This collaborative index ranged from textual
tags to preference indications like ratings or buttons to express interest or disinterest
in certain information.

By annotating content and indicating their preference, the users of social media
started to leave many traces that could be used by the system to learn about their
taste. Based on the user’s annotation history, the system could be designed to pro-
vide personalised information rankings. Relevance was no longer a global notion, but
dependent on the personal preference of each individual.

1.2 Scope

1.2.1 Social Media

The term social media is used to refer to websites that apply Web2.0 techniques to
create a platform where users can observe each other’s behaviour and social ties, and
which provides efficient tools to communicate and collaborate.

In most social media, people can contribute user generated content, which can
range from textual content (e.g. weblogs, encyclopedia articles) to different forms of
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multimedia content (e.g. video clips, photos, music). All this content is collabora-
tively indexed by the community and qualitative feedback can be given to either the
contributer or the content itself. The system weaves all these contributions into an
easily accessible web by providing cross links wherever possible.

Social media have emerged from different perspectives. Primarily two main classes
can be identified: first, systems that start from the notion of a social network and stim-
ulate the interaction between the users by allowing them to share content; examples
include: Orkut, Friendster, MySpace, LinkedIn and Facebook. Second, networks
that were primarily created for the distribution or management of content, and use
the social network as an overlay that stimulates this content distribution; for exam-
ple: YouTube, Flickr, LibraryThing, Del.icio.us, CiteULike. Both types of systems have
emerged simultaneously over recent years, and both developments showed that only
when both the social and content features are effectively implemented, have systems
been able to satisfy a large user community for a long period.

The popularity of combined content sharing and social features can be explained
by various arguments. As social media can be used to share activities or status up-
dates, people can be easily updated on the current well-being of their friends. Hereby,
the overall community interaction is stimulated, and it has become easier to maintain
solid social relationships with many people. Clever matching algorithms make sure
everyone is informed about the most relevant information and even stimulate the ex-
ploration of new content or social groups. Every single click generates a page full of
information about people, objects or events. In this way, social media provide answers
to and simultaneously stimulate the curiosity inherently present in the human race.
Many users have even indicated that this instant gratification may lead to Internet
addiction [122].

Social media are used to maintain both strong and weak social ties [41]. Natu-
rally, people have just a handful of intimate friends (strong ties) and several hundreds
of acquaintances (weak ties). While most people just focus on their closest friends,
some users try to connect to as many people as possible and manage to obtain thou-
sands of social ties. The resulting network is known to have a small-world structure,
which is characterised by high clustering and short path length between any two se-
lected nodes in the network [137]. This means that anyone in the world can easily
be contacted through the friends of your friends [131; 6]. Not only has it become
easier to maintain relationships within your current social circle, but social media ac-
tively stimulate the discovery of new relations. This feature can be very useful to get
introduced to people or companies when searching for a new job. Easy distribution
and access to each other’s self generated content has even made some of the social
media popular platforms to display artistic skills. The open community stimulates the
recognition of these skills and social media have become a new doorway to instant
fame.

The structure of social media does not only benefit its users, as the company
that owns the website also gets its share. Common business models in current web
services rely either on sales or advertisements. To ensure a web service’s revenue, it
needs to keep the users interested for as long as possible or provide them with (easy
tools to find) the products that match their interest. If the user appreciates a service
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provided by the network, he might even pay for an account with more possibilities.
Satisfying the users’ expectations is a challenging task in the continuously evolving
information age, that can only be accomplished if the system is tailored to suit each
individual user’s preferences. As the system aggregates all the user’s interactions it
learns more and more about the user’s preference over time. This collection of user
specific information allows the company to provide personal advertisements. If the
right products are recommended to each user at the right time, an advertisement may
not even be seen as an annoying distraction, but will be appreciated by the user [79].

1.2.2 Collaborative Indexing

With the introduction of collaborative annotations in social media, content indexing
has shifted from objective statistical methods to a more subjective categorization.
Everybody contributes to the description and organisation of the data. Actively or
passively, everyone leaves traces that can be used to improve the index of the content.
Some of these traces are subjective and therefore inherently related to the individual
user, others objectively say something about the content.

Figure 1.1 shows the model of collaborative annotations that is used in this thesis.
Because of subtle differences in social media design and user behaviour, no general
model will capture all possible aspects that might be present in this data. The pro-
posed model therefore is one of the many possible ways to represent this data, and
is proposed as a guideline for the definitions used in this thesis rather than a ground
truth. The entities that make up the data model are the user who interacts with the
system, the item which might be any piece of information (e.g. a textual document,
a movie or an image) and a tag which is a description attached to an item by a user.
The tasks presented in this thesis will focus on the relevance prediction of one of these
entities.

Opinions about the quality of content can be expressed through ratings. Different
interface elements let users express a rating in various ways, ranging from 10 point
scales to binary judgements in the form of digg or like buttons. A rating can also be
derived from a mouse click or an actual purchase of the item. Ratings create a relation
between user and item where the value of the rating determines the strength of the
relation.

Tagging is used in social media to give users a way to annotate content with various
types of descriptions. A tag assignment (TAS) creates a ternary relation between user,
item and tag. Commonly, tags are keywords that the user considers representative of
the topic of the items. These keywords can either consist of free text or be selected
from a limited vocabulary in the system.

Metadata is the information that describes an item, like length, author, video for-
mat etc. The relation between tags and metadata is a much discussed topic. In this
thesis a tag is seen as a piece of metadata that is promoted by a specific user, because
he considers it relevant to describe his personal relation to the item. Thereby the user
creates a direct preference relation to the tag. For example, the author of a book is
commonly seen as metadata, but many users also add the name of the author as a
tag to indicate that they are interested in this author. Some of the metadata, like
the number of pages of a book, will hardly ever be promoted to a tag because it is
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Figure 1.1: An overview of the relations between users, items and tags created by com-
mon annotation methods in social media. Next to collaborative annotations, many entities
contain some static information indicated by Metadata, Semantics and Demographics.

unrelated to user preference. A tag can thus also refer to other types of descriptions
besides keywords. An increasingly popular annotation is the geographical location of
the item. Mostly photographers use these geotags to indicate that not only was the
photo created at that location, but indirectly show that they have visited that place as
well.

Although the semantics of a tag are dependent on the context in which it appears
it is not modeled here as a relation between different entities. Tag semantics are
derived from the user’s language which has evolved over time and is not defined by
the user in a social tagging system. All visualised relations in this model are based on
annotations created and edited by the users of the system.

People are linked by the social network created from friendship relations or group
memberships. The emergence and characteristics of this social structure have often
been studied, also independently from social media [136]. The users who interact
with the system often provide some demographic information about themselves, like
sex, age or home town. This information only describes the user and does not link
different entities in the system.

Finally, items in social media can be linked by references like hyperlinks or cita-
tions, or grouped in topical clusters. If the content is generated by the users them-
selves, these relations are also collaboratively created. Therefore these references are
also visualised as collaborative annotation.

1.2.3 Thesis Demarcation

The social media studied in this thesis primarily focus on content distribution and
management. The used data sources are derived from:

Movielens2 A movie recommender website created by GroupLens Re-
search at the University of Minnesota [105]. The data consists of 100,000
ratings on a scale from 1 to 5 from 943 users on 1682 movies [54], and is
publically available from the Grouplens website.

2http://www.movielens.org/
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LibraryThing3 An online book catalog that allows its users to add tags,
ratings and reviews to the books in their personal library. It is also possible
to join topical groups and become friends with other users. The data
collected for this thesis consists of 7.5 million annotations that contain
one or more tags and a rating. Further details about the collection and
statistics of this data set will be given in Section 4.3.2.

Bibsonomy4 A website for categorisation and sharing of literature ref-
erences and website bookmarks. A public data set from Bibsonomy was
provided for the RSDC08 Discovery Challenge5. After preprocessing, this
data contains about 214 thousand annotations with one or more tags.
Further details about this data set will be given in Section 4.3.2.

Flickr6 A photo management and sharing website where users can up-
load their photos and annotate them with tags and geotags. For Part III of
this thesis a set of 43 million geotags from 126 thousand users is collected.
Further details about this data set are given in Section 8.3. For Chapter 9
a large large collection of textual tags from Flickr was made available by
Yahoo!.

The annotation methods that will be studied in this thesis are: ratings, tag assign-
ments of textual tags and geotags and tag semantics. The informational value of the
relations created by the annotations will be studied without making use of the content
of the individual items. Therefore, many of the presented results will extend to other
platforms that employ similar annotation methods for content description.

1.3 Contributions and Outline

The main contribution of this thesis is that it improves the understanding of collabora-
tive annotation data by studying new and existing retrieval tasks and thereby reveals
new opportunities for personalised information access. Based on recent developments
in social media, retrieval tasks are defined that will improve the information acces-
sibility in a user centered way. For each task, an appropriate relevance prediction
method is either adopted from state-of-the-art work and adapted to the task, or an
algorithm is proposed if a previously unaddressed task is studied. The parameters of
the method are selected so that they relate to external factors that might influence
the task. In this way, the optimisation of the parameter settings reveals insight in the
data, which can be related to system design issues or user behaviour.

The deployed ranking models are used as a means to learn about the factors that
contribute to the accessibility of the information in the system. By increasing the
understanding of the collaborative annotation data, new possibilities for personalised

3http://www.librarything.com/
4http://www.bibsonomy.org/
5http://www.kde.cs.uni-kassel.de/ws/rsdc08/
6http://www.flickr.com/
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retrieval are uncovered. It appears that the potential retrieval gain attained by person-
alisation is strongly dependent on the situation. Slight variations in task definition,
system design or data characteristics determine the optimal approach and the extent
to which the result can be adapted to the individual user. By iteratively changing the
task definition and finding the optimal model parameters this thesis simultaneously
finds the optimal personalised retrieval methods and increases the understanding of
the data.

In previous literature, the study of personalised information retrieval was mostly
focused on web search, the field of recommender systems dealt with making predic-
tions based on ratings or sales data and social media studies were oriented towards
the understanding of the collaborative annotation effort. Although all three fields aim
at understanding and improving digital information exchange, the communities are
largely separated. With this thesis the studies of personalised information retrieval,
recommender systems and social media analysis have been brought closer to each
other.

This thesis is divided in 4 parts based on the relations defined in Figure 1.1. Part I
deals with ratings and provides several extensions to the field of collaborative fil-
tering. Part II shows that many personalisation tasks emerge if textual tags can be
assigned to the content. This part gives a strong contribution to the understanding
of social tagging systems. In Part III new location-based tasks are proposed based on
geotag data. In three chapters, this part gives an interesting insight into geotag data
and methods to find relations in this data. Part IV shows how the collaborative an-
notation effort can be used to learn about the semantics of tags. All chapters directly
relate to published scientific papers, each chapter is therefore self contained and can
be read independently from the rest. The discussion in Chapter 11 gives a synopsis of
the main findings, a discussion of the followed approach, some open issues regarding
this work and a prospect of the future of information consumption.

PART I - Ratings

User-based collaborative filtering exploits a set of similar users to predict ratings for
the target user. Chapter 2 of this thesis extends the user-based collaborative filtering
approach to perform in a distributed peer-to-peer environment. The social peer-to-
peer client Tribler builds a semantic overlay based on users with similar preference
profiles to enable accurate search and recommendations [102; 134]. The limitation
introduced by this setting is that each user has only partial access to the ratings of
other users, and needs a way to efficiently select the most useful peers to store in
its local cache. The main contradiction in user-based collaborative filtering is that
if two users are found with exact similar ratings, both of them will not be able to
recommend anything to the other. To avoid filling the cache with users that are sim-
ilar but not able to provide recommendations, chapter 2 introduces a model based
on similarity, confidence and usefulness which is especially applicable in distributed
recommendation settings.

Compared to rating prediction, the task of content ranking is only focused on
correct prediction of the most interesting content (the top of the ranking), instead
of predicting a relevance value for all available content. A different task also asks
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for different prediction methods. Chapter 3 adopts a previously proposed modifica-
tion [29] of personalised Pagerank [99] to address this task on a rated corpus from
LibraryThing and a data set from Movielens. Graded relevance assessments in the
form of ratings however can either indicate a positive or negative relation between
the user and content. With a combination of two separate graphs, the notion of nega-
tive feedback is included in the personalised ranking. The results indicate that a user’s
positive and negative ratings are strongly interleaved, which can be explained by the
selective process before a user decides to assess a certain item. Low ratings should
therefore not be punished but exploited to find more relevant content.

Chapter 2 is published as: Maarten Clements, Arjen P. de Vries, Johan A. Pouwelse, Jun Wang, and
Marcel J. T. Reinders. Evaluation of Neighbourhood Selection Methods in Decentralized Recommen-
dation Systems. In SIGIR07 Workshop on Large Scale Distributed Systems for Information Retrieval,
July 2007.

Chapter 3 is published as: Maarten Clements, Arjen P. de Vries, and Marcel J. T. Reinders. Ex-
ploiting Positive and Negative Graded Relevance Assessments for Content Recommendation. In K.
Avrachenkov, D. Donato, and N. Litvak, editors, WAW09: Proceedings of the 6th International Work-
shop on Algorithms and Models for the Web-Graph, LNCS 5427, pages 155-166. Springer-Verlag,
Berlin, Heidelberg, February 2009.

PART II - Tags

In Chapter 4 a limited random walk is applied to study the influence of the design
choices in collaborative annotation systems on popular retrieval tasks. A framework
of 12 tasks is proposed and 4 different tasks are evaluated. For the tasks Item rec-
ommendation, Personalized search, Tag suggestion and User recommendation the value
of a user’s previous tags and ratings is evaluated and the number of steps made by
the random walk model is used to study the optimal amount of smoothing with the
background popularity. It is shown that when a site actively suggests tags to its users
a more coherent corpus is created and a user’s personal tags can be used for better
personalisation.

For many tasks the combination of ratings and tags can improve the retrieval of
relevant information. Also, it is shown that the combination of the annotations by
multiple users improves the retrievability of the content. When a system only allows
a single user to contribute tags to an item the content is less well described and more
background smoothing is necessary. Both findings indicate that the aggregation of
different representations of the same information (or polyrepresentation) results in an
improved description of the intrinsic information need. This corresponds to the earlier
observations that polyrepresentation can often enhance retrieval performance [60],
and recommender systems [11; 133].

When a user queries a collaborative tagging site, the amount of information in the
query determines the quality of the retrieved results. When more terms are appended
to the query, the intent of the user becomes more obvious and the potential for person-
alisation decreases. Chapter 5 studies the limits of personalisation in tagging systems
with increasing query length. In the used tagging corpus, a query consisting of 4 or
more tags is shown to be unambiguous and therefore personalisation and smoothing
with a background model have no positive effect on the retrieved content.
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Chapter 4 is published as: Maarten Clements, Arjen P. De Vries, and Marcel J. T. Reinders. The
Task Dependent Effect of Tags and Ratings on Social Media Access. ACM Transactions on Information
Systems, 28(4), October 2010.

Chapter 5 is published as: Maarten Clements, Arjen P. de Vries, and Marcel J. T. Reinders. The
Influence of Personalization on Tag Query Length in Social Media Search. Information Processing &
Management, 46:403-412, May 2010.

PART III - Geotags

The task of location prediction is relatively new. Only since GPS receivers have
become integrated in mobile devices like cameras and mobile phones, has enough
data been collected to study the travel history of individual users. In chapter 6-8 a
set of geotags collected from the popular photo sharing site Flickr is used to study
whether location data can be used to predict which landmarks attract similar people.
Compared to traditional recommendation problems, location prediction has to deal
with continuously valued points in a 3D space, making similarity computation less
trivial than in the usual discrete space constructed from a limited number of objects.

A grid based approach with Gaussian smoothing is used in chapter 6 to find that
similar locations can be identified by comparing the overlap in user visits to the prior
visiting probability of a location. This method can be used by travel websites to show
similar destinations for a given query location. In chapter 7-8 both user-based and
item-based approaches to location recommendation are proposed, using a Gaussian
density estimation to compute distances in the continuous object space. The location
similarity model proposed in chapter 8 proves to be a versatile model that can accu-
rately predict interesting locations at different scales. Using only the location history
of the Flickr users, it is possible to relate semantically similar places at opposite sides
of the world. Depending on the amount and coherence of the preference informa-
tion contributed by the user, accurate personalised location recommendations can be
made at any preferred scale in a previously unvisited region.

Chapter 6 is an extended version of: Maarten Clements, Pavel Serdyukov, Arjen P. de Vries, and
Marcel J. T. Reinders. Finding Wormholes with Flickr Geotags. In Cathal Gurrin et al., editors, ECIR
2010, LNCS 5993, pages 658-661. Springer-Verlag, Berlin, Heidelberg, 2010.

Chapter 7 is published as: Maarten Clements, Pavel Serdyukov, Arjen P. de Vries, and Marcel J. T.
Reinders. Using Flickr Geotags to Predict User Travel Behaviour. In SIGIR10: Proceedings of the 33th
annual international ACM SIGIR conference on Research and development in information retrieval,
pages 851-852, New York, NY, USA, 2010. ACM.

Chapter 8 has been submitted as: Maarten Clements, Pavel Serdyukov, Arjen P. de Vries, and Marcel
J. T. Reinders. Personalised Travel Recommendation based on Location Co-occurrence ACM Transac-
tions on Information Systems. 2010.

PART IV - Tag Semantics

Since the introduction of tag functionality in social media semantic tag analysis
methods have been proposed to understand the user dynamics in the system [49].
Although end users are not educated in the annotation of content, it is commonly
believed that the aggregation of many tags will lead to an accurate description of the
content [43]. The descriptions provided by the collaborative effort of the users do
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not only describe the content, but also contain information about the structure of the
underlying language. It is interesting to investigate how semantic relations between
tags can be learned from the statistics of the data.

Chapter 9 presents a new framework to establish the semantic specificity relation
between two tags. Within this framework an extensive study of existing and new
term specificity features shows that the combination of several features can be used to
improve search and browsing tasks. Most previously proposed methods to determine
tag specificity observe each tag in isolation and estimate their relation by comparing
both individual measurements. In this chapter a method that takes both tags into
account while computing their relation is shown to outperform the prediction based
on other features.

Similar tags are often found by looking at the co-occurrence of two tags on the
same content [8; 119]. Chapter 10 shows that synonyms can be distinguished from
otherwise similar tags by exploiting the user dimension as synonyms are rarely used
by the same user. Automatic estimation of tag semantics is a useful addition to exist-
ing term hierarchies as an automatic method can deal with new emerging terminology
and misspelled words, while a fixed word hierarchy can not. The collective intelli-
gence created by the community effort can be exploited in many ways to discover
new trends in user behaviour and personalisation opportunities for more effective
information retrieval.

Chapter 9 is based on collaborative work with Yahoo! Research Barcelona: Maarten Clements, Börkur
Sigurbjörnsson, Vanessa Murdock and Roelof van Zwol. Deriving Term Specificity from Social Tagging
Data. Yahoo! Research Barcelona. 2009.

Chapter 10 is an extended version of: Maarten Clements, Arjen P. de Vries, and Marcel J. T. Rein-
ders. Detecting Synonyms in Social Tagging Systems to Improve Content Retrieval. In SIGIR 08:
Proceedings of the 31st annual international ACM SIGIR conference on Research and development in
information retrieval, pages 739-740, New York, NY, USA, 2008. ACM.
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2
Evaluation of Neighbourhood Selection Methods

in Decentralized Recommendation Systems

Recommendation systems are important in social networks that allow the in-
jection of user-generated content and let users indicate their preferences to-
wards the content introduced by others. Considering the increase of usage
of these collaborative systems, it seems only a matter of time before the cur-
rent centralized systems will be replaced by decentralized solutions. However,
current collaborative filtering systems assume that recommendations can be
based on the entire data collection in the network.
This work evaluates the performance of user-based collaborative filtering sys-
tems when only partial knowledge about the network is available at an end-
user’s computer. We propose a utility model that combines three important
aspects of network users (similarity, confidence and usefulness) in order to
create a semantic overlay network optimized for autonomous content recom-
mendations. We compare different similarity functions on the most common
dataset in collaborative filtering and we show the influence of the confidence
and usefulness parameters on both dense and sparse data.
We find that the commonly used similarity function results in sub-optimal
performance when used as updating criterion for locally stored rating profiles.
We show that taking into account the level of confidence in the computed
similarity can greatly improve recommendation accuracy, especially when a
small user neighborhood is selected. Also, conventional methods select many
users that cannot contribute to the recommendation, because they have rated
too few items. The usefulness parameter that we introduce compensates for
this problem, so that even a small local cache in very sparse data provides
valuable recommendations.

This chapter is published as: Maarten Clements, Arjen P. de Vries, Johan A. Pouwelse, Jun
Wang, and Marcel J. T. Reinders. Evaluation of Neighbourhood Selection Methods in Decentral-
ized Recommendation Systems. In SIGIR07 Workshop on Large Scale Distributed Systems for
Information Retrieval, July 2007.
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2.1 Introduction

Over the last decade we have witnessed the rise of a new phenomenon on the Internet.
Social networks that allow users to share their own content and browse through other
peoples items are rapidly gaining popularity over conventional static websites. Social
communities as YouTube1, Flickr2 and many more attract millions of users each day,
and this growth in online collaboration is unlikely to stagnate in the coming years.

Meanwhile the largest part of Internet traffic is occupied by decentralized content
distribution systems depending on peer-to-peer (P2P) technology. P2P protocols like
Gnutella3 and BitTorrent4 have proven to be among the most competent methods to
efficiently distribute large volumes of data to a large community of users. In order
to cope with the increasing amount of data stored on local servers from currently
popular web services, we believe that decentralized social networks will undeniably
play an important role in the evolution of global content distribution.

One of the emerging technologies that aims to discover information in online
databases is collaborative filtering (CF) [105]. In CF the history of network users
is dedicated to generate recommendations for a certain target user. Recommenda-
tions have shown to be a useful addition to conventional search, because they allow
users to discover content that matches their interest without having to type a specific
query. In the last decade many new techniques have been developed to facilitate this
recommendation. The most common approach to CF is often termed ‘memory based’
recommendation, which can be split in two different approaches: 1) User-based rec-
ommendation first identifies a set of common users by comparing rating or download
profiles, and subsequently uses only the information from these users to predict a
recommendation for the target user. 2) Item-based recommendation attempts to find
items that have been downloaded by the same users as the items for which the target
user showed interest.

Research in CF has focussed on recommendations on central databases, where the
entire dataset is available at any time. Our work considers a P2P architecture instead,
in which users have partial local information about the network, optimized for their
personal recommendations. This setting is motivated by the work by Pouwelse et
al. [102], who developed TRIBLER, a P2P system capable of social content discovery.
TRIBLER uses an algorithm based on an epidemic protocol that can be summarized as
follows. Each user maintains a set of references to the peers he has discovered and
stores the rating history of the N most similar peers in his local cache. In our setting,
users have rated a selection of movies on a discrete scale r ∈ {1, 2, 3, 4, 5} (r = ∅ if no
rating was given). A user iteratively connects either a random peer (exploration) or
one of the most similar peers (exploitation). Connected peers exchange information
about their locally stored rating profiles, and update their local similar peers cache,
based on the combination of their individual caches (see Figure 2.1). This way, the
locally stored neighborhood converges to the N most similar peers available in the

1http://www.youtube.com
2http://www.flickr.com
3http://www.gnutella.com we believe that decentralized social networks will undeniably play an

important role in the evolution of global content distribution.
4http://www.bittorrent.com
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Figure 2.1: Each user maintains a local cache containing the rating profiles of N users. By
connecting alternately the most similar or random random peers to exchange preference
information, the list of most similar peers converges to the optimal peers from the network.

network. TRIBLER uses this social overlay network to increase both download speed
and social features like content recommendations. This makes the selection criterion
of similar peers a vital component of the system.

We perform a thorough survey of the most common similarity functions in CF in
order to find the most suitable updating criterion for peer profile exchange. We then
define a utility model that combines three aspects of network users with respect to
recommendation (similarity, confidence and usefulness) and demonstrate how we can
set the model parameters in order to converge to the ideal neighborhood for local
storage in a decentralized network. In this work, we do not take important network
aspects like peer uptime and trust into consideration for the selection criterion; we
purely focus on the ideal setting for content recommendation. Because we do not
experiment on an actual P2P system, our experimental results are based on the sim-
plifying assumption that the target user’s local cache always contains the correct N

users identified by the utility model. Due to the rapidly changing nature of a true P2P
system, the optimal set of users will in reality probably not be found. It has however
been shown that in a small simulated P2P network full convergence can be reached
[102]. Results in this chapter demonstrate that user selection in decentralized rec-
ommendation systems should not be based on similarity alone, but should take into
account the confidence and usefulness aspects.

2.2 Related Work

In the most simple setup of a recommendation system the data consists of users
and items with a simple binary (like/dislike) or continuous (rating) relation between
them. User-based CF methods select the best N users that have given a rating for a
certain item [12; 52; 105], and subsequently use only these rating profiles to estimate
the rating of the target user for this item. This strategy however implies that we have
to select a different set of users for each rating that we try to predict, which effectively
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requires access to the full user-item matrix. Since the creation of a semantic overlay
by passing messages between peers slowly converges to the optimal configuration,
this work assumes that we cannot update the set of similar users for each prediction.
We select one set of N users to generate all predictions for the target user, resulting in
a set of users that have not necessarily rated all the items we want to predict. There-
fore, in our work it becomes important that we select users who have a large amount
of given ratings, in order to be able to make predictions even for small N .

It has been shown that the creation of Semantic Overlay Networks (SON) can
improve search performance in P2P networks. Semantic overlays can be created by
clustering peers with similar content [30] or using a self organizing network based on
a social model [16]. Usually these semantic overlays are built to optimize distributed
search, while our utility model strives to predict autonomous recommendations.

Besides content search, SONs can improve the content distribution over the net-
work. Pouwelse et al. [102] used this phenomenon to increase download performance
and at the same time used the most similar peers to provide content recommendations
for the network user. Up till now the optimization of the similarity function with re-
spect to recommendations has been neglected in this system.

Ogston et al. discussed the value of recommendation in a decentralized network
by comparing random user neighborhood selection to conventional CF selection meth-
ods [95]. They however did not adapt the conventional user selection method to
achieve optimal performance in the decentralized situation. Item-based recommen-
dation in decentralized networks has been studied by Wang et al. [134]. Because a
P2P system is based on the connections between network users we however see a
user-based recommendation as a more logical choice.

In this work we adopt a simple user-based recommendation scheme, and we ex-
tend the commonly used similarity function by integrating a confidence and usefulness
factor. The confidence factor that we integrate in our model has been shown to im-
prove recommendations in the work of Herlocker et al. [54], and was adopted by
McLaughlin et al. [84] and Melville et al. [85]. However, we show in this work that
they combined this factor with a similarity measure that demonstrates sub-optimal
performance. Furthermore, we show that optimizing the weight of this confidence
factor can increase the performance depending on the data and the used similarity
function. After this, we show that if a small local cache is used for the recommenda-
tion of all items, our usefulness factor can improve the prediction, especially in sparse
data sets.

2.3 Utility Model

2.3.1 Computation of Weighted Recommendations

User-based recommendation predicts a user’s ratings on the basis of ratings made
previously by the N ‘most similar’ users. In the original GroupLens system [105] as
well as many recent works [85; 84; 135] the ratings of these users are combined by:

r̂u,i = r̄u +

∑
v∈Nu|rv,i �=∅ w(u, v)(rv,i − r̄v)∑

v∈Nu|rv,i �=∅ |w(u, v)| (2.1)
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Figure 2.2: Two users with partially overlapping rating profiles. User u is the target user
for which we want to recommend items that he has not rated yet. User v is a potential
recommendation candidate who has a partial rating overlap with user u.

In which r̂u,i is the estimated rating of the target user u for item i, rv,i is the rating
of user v for this item, r̄ is the mean of all the ratings given by a user and Nu is the
selected set of nearest neighbors for user u, based on the similarity function w(u, v).

It has however been shown by Herlocker et al. [52] that rating normalization by
both the mean and standard deviation can slightly improve recommendations with
respect to those based on equation 1. Therefore, we compute recommendations by:

r̂u,i = r̄u + σu

∑
v∈Nu|rv,i �=∅ w(u, v)(rv,i − r̄v)/σv∑

v∈Nu|rv,i �=∅ |w(u, v)| , (2.2)

which assumes that users’ ratings not only differ by a certain offset, but also have a
difference in standard deviation (σ).

Usually, not all users in the selected set (N) have given a rating for the items
that we want to predict. Traditional CF methods simply select more users so that
the predictions are always based on N ratings. Because we can not adapt the top-N
for each prediction, we only sum over the existing ratings in the equations above. If
the selected set of rating profiles from the N users is empty for a certain item, no
collaborative recommendation can be given. In this case we predict r̂u,i solely on the
mean of all the target user’s ratings (r̄u).

2.3.2 Utility Model for User Selection

The ranking of the most similar users to the target user is generally derived by com-
puting the similarity w(u, v) of the ratings that were given by both the target user (u)
and the potential recommending user (v). This similarity is usually computed as the
Pearson Correlation [105] or the Vector Similarity (VS) [12].

Figure 2.2 schematically represents two users’ rating profiles, that have a partial
overlap. The set of items rated by user u is represented by Iu. Based on this figure we
define the value of a potential recommender as a combination of three aspects:

1. Similarity

The most important aspect of the utility model is the similarity between the
rating profile of the target user and the profile of the potentially selected peer
(w(u, v)). Only the recommendations of similar users can give a good prediction
of the rating from the target user. We state that the rating similarity between
users can only be determined on the items that were rated by both users (Iu∩Iv).
Different similarity measures will be compared in section 2.3.3.



22 | Chapter 2

2. Confidence

The confidence that we have in the similarity between users is related to the
number of items both users have rated. If two users have rated many similar
items the probability that the computed similarity is true becomes larger. Be-
cause the maximum rating overlap is bounded by the number of ratings that
the target user has given, we express the confidence measure as P (Iv|Iu); the
probability that user v rated an item, given that user u has rated this item. This
probability captures the intuition that user v should have rated many of the
items that user u has rated, computed as:

P (Iv|Iu) =
|Iu ∩ Iv|

|Iu| (2.3)

3. Usefulness

We select the top-N similar users because they are expected to be good candi-
dates for recommendation. However, this assumption holds only when these N

users have actually given ratings for items that user u has not seen yet. In prac-
tice, data is sparse and the selected top-N often contains fewer than N ratings
per item. For small N , this implies that the recommendation depends on very
few ratings. In order to improve the reliability of recommendations for small
N , we therefore introduce the usefulness of a peer as the probability that user v

has rated an item that we want to predict for user u: P (Iv|Īu). This value can
be computed as follows:

P (Iv|Īu) =
|Īu ∩ Iv|

|Īu| (2.4)

Because we do not have local access to information about the entire collection
of available items, the value of |Īu| is defined as |I| − |Iu|; the number of items
that is rated by any of the users in the target user’s local cache,

I =
⋃

v∈Nu

Iv (2.5)

minus the number of items rated by the target user itself (|Iu|).

We define the utility model as a weighted combination of these three aspects:

w∗(u, v) = w(u, v)α ∗ P (Iv|Iu)β ∗ P (Iv|¬Iu)γ (2.6)

where the factors α, β, γ are used to control the influence of the three aspects indi-
vidually. We use a multiplication of the elements, because in the usage of the weight
factor in Eq. 2.2, relative differences between user weights are more important com-
pared to absolute differences. In this way, if any of the elements of the utility model is
doubled, also the influence of this user in the recommendation is doubled. To adjust
the relative differences between the different elements, we use the weight factors as
exponents. We will use the value of w∗(u, v) as the new weight factor in Eq. 2.2.
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2.3.3 Similarity Measures

For the computation of the user similarity in our utility model we will consider two
different similarity measures:

1. Full Pearson correlation

We can compute the Pearson correlation between entire rating profiles by first
imputing (ascribing) each users average rating at the positions where no rating
was given,

rv,i =
{

r̄v if rv,i ∈ ∅
rv,i otherwise

and then computing:

w(u, v) =

{
ρu,v =

P
(ru,i−r̄u)(rv,i−r̄v)

σuσv
if ρu,v > 0

0 otherwise

Here we do not take the negative correlations into account, so all negative out-
comes are set to 0. In Breese et al. [12] the imputation method is termed default
voting.

2. Overlap Pearson correlation

A similarity measure used in most memory based CF approaches [54; 52; 84;
105] is the Pearson correlation between only the overlapping part of the rating
profiles. This method ignores the ratings that were given by only one of the two
users under comparison, and can therefore give incorrect normalizations.

Vector similarity (cosine correlation) and the Spearman rank correlation coefficient
were compared to the Pearson correlation coefficient in the work of Breese et al. [12]
and Herlocker et al. [52] respectively, but both appeared to perform significantly
worse than the Pearson correlation. Cosine correlation only differs from the Pearson
correlation by the fact that it ignores the difference in rating offset between users. We
believe this offset is a natural phenomenon that is inherently present in user provided
ratings. We will therefore not consider this measure in this work. The Spearman rank
correlation coefficient first ranks all ratings and subsequently computes a Pearson
correlation of the values of the ranks. Tied ratings get the average of all the rank
values that belong to the same rating. We follow the assumption of Herlocker et
al. [52], that because we have only 5 distinct ratings, many ties will occur and this
measure will not improve over the normal Pearson correlation.

2.4 Experiments and Results

2.4.1 Data

We have conducted our experiments on the Movielens5 data set, which consists of
100,000 ratings for 1682 movies by 943 users. This results in a dataset with a density

5http://www.grouplens.org/
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Figure 2.3: The baseline MAE scores. We show the MAE achieved with normalization
by mean (Norm: M) or both mean and standard deviation (Norm: MS). Also, the MAE
for random peer selection and the MAE when we estimate the ratings by the target user’s
mean rating are shown.

of 6.3% (about 1 out of 16 items has been rated). Ratings have been given on a scale
of 1 to 5, 1 being dreadful and 5 excellent. The data has been split into 5 different
training and test sets, where the training sets contain 80% of the data and the test
sets 20%. The splits have been made in a way that all users and items maintain a part
of their ratings in every set.

In our social P2P setting we see this data as user injected content that has been
rated by multiple users over the network. The rating profiles are distributed over the
network by the algorithm described in section 2.1.

With regard to most collaborative databases, the Movielens data is relatively dense.
The recently published data set from Netflix [47] has a density of 1.2% and we expect
that sites that allow people to share their own content (e.g. Tribler, YouTube, Flickr)
are even more sparse. We therefore also evaluate the effect of sparsity on the optimal
parameters for our model, by removing increasing parts of the Movielens data.

2.4.2 Evaluation Metric

We use the mean absolute error (MAE) as evaluation criterion. This metric is defined
as the average absolute difference between predicted rating and the actual rating.

MAE =

∑M
j=0 |r̂j − rj |

M
, (2.7)

where M are all the predicted ratings.
This metric has often been used in the evaluation of CF algorithms, we therefore

see it as an adequate assessment that makes our results comparable to other findings.

2.4.3 Baseline Scores

Figure 2.3 shows the difference between recommendation predictions normalized by
mean (Equation 2.1) or by both mean and standard deviation (Equation 2.2). Here
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Figure 2.4: Mean absolute error for different settings of the utility parameters, using the
full correlation similarity function. Setting 1 (S1) shows the results when only the similarity
function is used. In setting 2 and 3 the utility model is respectively optimized for either β

or γ.

the full profile correlation is used as a similarity measure and both the confidence and
usefulness factor are set to zero. We see that compensating for a difference in rating
spread improves the recommendation scores. We will therefore only use Equation 2.2
for recommendations in the rest of the chapter.

If no recommendation can be given for a certain item, because none of the N

selected similar users has given a rating for this item, we estimate the rating by the
mean rating of the target user. The MAE achieved by always imputing the user’s mean
as estimation is also shown in Figure 2.3.

To compare the neighourhood to that of a p2p system that does not utilize the
users’ taste profiles, we show the scores achieved with randomly selected peers, con-
tributing equally to the estimation of the rating in Equation 2.2 (w∗(u, v) = 1).
This recommendation score eventually converges to the one where all predictions
are based on the average rating of the items.

Traditional CF research, in which the top-N selected users is allowed to change for
each recommendation [52], often shows an optimal value of N after which the result
starts to decline. We notice that this optimal value is not present in our results. This
difference is explained by the fact that due to missing data the number of ratings that
contribute to our recommendations (effective N) is significantly smaller than the N

users we select. Therefore, when we increase N we are improving the prediction for
some items and at the same time we downgrade the prediction for others, because
the real number of contributing ratings differs per item. According to the results of
Herlocker et al. [52], where exactly N ratings are used in each recommendation, the
optimal number of contributing ratings is around 20-60. If we select a neighborhood
of 100, some predictions will be relying on fewer than 20 ratings, while others are
computed on more then 60. Eventually, the MAE curves stabilize for large N , because
the weight function (w∗(u, v)) only decays for increasing N .
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Figure 2.5: Mean absolute error for different settings of the utility parameters, using the
overlap correlation similarity function.

2.4.4 Utility Model

Figures 2.4 and 2.5 show the MAE, using respectively the full correlation and the
overlap correlation as similarity measures. Here α has been set to 1 while β and γ

are individually optimized to achieve the lowest error. This means that we set ei-
ther β or γ to zero, and find the optimal setting for the other parameter. We explicitly
state that these results are obtained with retrospective experiments – parameters have
been optimized on the test set – so the results demonstrate only that the introduced
parameters can improve recommendation scores. Because the optimal parameter set-
tings differ for each data set the model has to be optimized in each new setting.

We observe that both the confidence factor and the usefulness factor can improve
the results, especially for small N (Fig. 2.4 and 2.5, setting 2/3). In the P2P setting
this means that we can achieve the same error while storing much less data on the
user’s local machine.

Optimizing the results over all three weight factors (setting 4) did not improve
the MAE over the results we obtain by just increasing the confidence (setting 2), we
therefore do not show this result in Figure 2.4 and 2.5. In Section 2.4.5 we will show
that if the data is more sparse the addition of the usefulness factor does improve the
results over the combination of only similarity and confidence.

Comparing the full correlation measure with the correlation on the overlapping
part of the ratings shows that the full profile correlation achieves slightly better re-
sults (minimal MAE 0.7335 vs. 0.7305). If the correlation is computed on only the
overlapping part of two users’ ratings, the normalization step in the correlation mea-
sure can produce unexpected results, because in a sparse data set the overlapping
part usually constitutes only a fraction of a user’s ratings. In Figure 2.6 we show
two partially overlapping profiles, where user 1 clearly dislikes the items both users
have rated and user 2 clearly likes these items. A computation of the correlation on
the overlapping part would however result in a similarity close to one, while a full
correlation correctly normalizes the profiles maintaining the distance between these
items.
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Figure 2.6: Two partially overlapping rating profiles can get a very high correlation on the
overlapping part by accident. When the correlation between the entire profiles is com-
puted, the profiles are correctly normalized so that the distance between different ratings
is preserved.

Furthermore, we notice that without the influence of the confidence and useful-
ness factor (setting 1) the MAE for the overlap correlation first increases before it
starts to improve. The full profile measure always improves when the neighborhood
size increases. This difference is caused by the fact that the overlap correlation can
give a high similarity score to users with only a few commonly rated items. The full
correlation measure however, depends already on the length of the overlap, because
after the normalization step the correlation measure is reduced to:

ρu,v−full =
∑

i∈I r̃u,i · r̃v,i

|I| , (2.8)

where r̃u,i is the rating of user u for item i after normalization by the user’s mean and
standard deviation. I are the items rated by any of the users in the top-N of the target
user, u is the target user and v is the potential candidate for the recommendation.

Because of the normalization the imputed mean ratings at the not rated positions
evaluate to zero, therefore the inner product of the rating profiles is exactly the same
as the inner product of the overlapping part of the profiles:

ρu,v−full =

∑
i∈(Iu∩Iv) r̃u,i · r̃v,i

|I| , (2.9)

where Iu ∩ Iv is the overlapping part over the two users’ rating profiles.
Because the factors |I| and |Iu| are both constants with respect to the target user,

we can see that Eq. 2.9 is proportional to the overlap correlation times the confidence
factor (β = 1):

ρu,v−ol × P (Iv|Iu) =

∑
i∈(Iu∩Iv) r̃u,i · r̃v,i

|Iu ∩ Iv| × |Iu ∩ Iv|
|Iu| (2.10)

Concluding, the full profile distance differs from the overlap correlation measure
by the difference in normalization and β = 1.

Another observation is that in the computation of the full profile correlation short
rating profiles are normalized by a smaller standard deviation than long profiles. Users
who did not rate many items are therefore favored with respect to frequently rating
users. This effect is contrary to that of our confidence and usefulness factor that
aim at selecting users with many ratings. Because users with a short rating profile
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Figure 2.7: This figure shows the MAE when all ratings of the selected N users are
included in the recommendation, and when the number of ratings is limited to 40. Full
top-N shows the MAE when exactly N ratings are used for each recommendation.

are usually bad recommendation candidates, the full profile measure can still benefit
from the extra confidence or usefulness factor (β, γ > 0).

In section 2.4.3 it was suggested that the optimal number of contributing ratings
lies somewhere between 20 and 60. Figure 2.7 shows that if for each user the number
of locally stored ratings is limited to 40 per item, the MAE slowly converges to the
optimal score obtained when the recommendation is computed on exactly N ratings
(Full top-N). In this way, less data needs to be stored locally and better recommenda-
tion performance can be reached for large N . We do however notice that the number
of positively contributing ratings depends on the size and nature of the network. This
number should therefore not be taken as optimal value in a different network or
database.

2.4.5 User Selection in Sparse Data

The usefulness factor was introduced in order to select peers that have given a rating
to many items in the network. In this way the recommendations will depend on more
information and therefore be a more accurate prediction of the target user’s rating.
Because the Movielens data is however relatively dense, we do not suffer much from
very empty rating profiles. To test the influence of the usefulness parameter on more
sparse data, we have subsequently removed 0%, 25%, 50%, 75% and 90% of the
ratings from half of users in the training set. We then compute the average MAE
achieved for small top-N (N ∈ {10, 20, 30, 40, 50}), and we show the difference in
mean MAE for increasing values of γ, compared to γ = 0. Figure 2.8 shows that
the influence of the usefulness parameter increases with increasing sparsity. Also, the
value of γ for which the optimal result is reached slightly increases.

As another argument for our usefulness parameter we show the number of ratings
that contribute to the recommendation for different numbers of N in Figure 2.9. For
neighborhood sizes N ∈ {10, 20, 30, 40, 50} this figure shows the median of the num-
ber of users that has rated the items for which we want to predict a rating (effective
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Figure 2.8: For different values of usefulness (γ) we show the difference in MAE compared
to γ = 0. The MAE is here computed as the mean of the MAE for N ∈ {10, 20, 30, 40, 50}.
We compare the results for different levels of sparsity and notice that the addition of the
usefulness factor has much more influence when the data is sparse. Here we have set
α,β = 1.

N). We show the effective N for the Movielens data without rating removal (Dense
data) and utility parameter setting 2, for 90% removal with utility parameter setting
2 (Sparse: γ = 0) and 90% data removal with utility parameter setting 4 (Sparse:
γ = 0.3).

The figure shows that in the original (dense) data set about 40% of the selected
users contribute in the recommendation for a certain item, when a small neighbor-
hood is considered. In the sparse data, about 20% of the users in the selected neigh-
borhood have given a rating for the target item. If random users would have been
chosen these values would have been around 5% for dense data and 2.8% for the
sparse data. This demonstrates that the weight function without the addition of the
usefulness parameter already selects users that have rated a similar set of items as
the target user, which indicates a common interest in movies. An increase in γ as
expected selects a neighborhood with more ratings, which explains the MAE improve-
ment when a small neighborhood is selected in a sparse data set.

2.5 Conclusion

The selection of a peer neighbourhood, containing similar users, is a vital function for
a social p2p client, since the taste neighbourhood can improve both download speed
and content recommendations. In this chapter, we have investigated the performance
of common collaborative filtering techniques for deployment in a decentralized envi-
ronment. In this setting each user has a locally optimized cache of rating profiles for
recommendation. The weighing factor of the collaborative filtering system is seen as
the resource selection method to create the social overlay network and the updating
criterion for the user’s local cache. After the selection of a user’s neighborhood, this
set of users is fixed and can not be updated for each individual prediction. This setting
results in a varying number of ratings per prediction and it can even occur that no
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Figure 2.9: The real number of peers that contributes to the recommendation for different
numbers of N . Results are shown for Dense data (α,β = 1; γ = 0), Sparse data without
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γ = 0.3). The full profile correlation is used as similarity measure.

collaborative recommendation can be made for a specific item (because no users with
ratings have been selected for this item).

We have proposed a utility model, that extends the common similarity functions
by including a variable confidence and usefulness factor. The confidence factor com-
pensates for the fact that similarities based on many ratings are more reliable than
those based on only a few. The usefulness factor increases the number of ratings that
contribute to the recommendation, by favoring users with many given ratings over
those who just rated a few items. We have compared two similarity functions, and we
have shown how our utility model can improve the recommendation accuracy.

Most user-based CF systems use the Pearson correlation, computed on the over-
lapping part of the users’ rating profiles, as a similarity measure. Often, this similarity
is combined with a confidence factor (β = 1). We have shown that the full profile
correlation (with imputed mean ratings at the empty positions) can improve the pre-
diction results, because this measure normalizes the rating profiles on all the ratings
given by the users. In the computation of the overlap correlation, normalization in-
accuracies can occur because the overlapping part constitutes only a fraction of the
users’ ratings.

Although the full profile correlation already encapsulates a weighing factor that
compensates for the length of the overlapping part of the rating profiles, we have
shown that this measure can still benefit from the additional confidence factor. We
are not aware of any other work that combined the full correlation method with
an extra confidence factor, we therefore suggest that this method can also improve
recommendations in a centralized system (where the top-N can be adjusted for each
recommendation).

In a sparse data environment the predicted recommendation often depend on a
small portion of the selected peers. In order to provide enough locally stored ratings
to estimate the taste of the target user, we have introduced the usefulness factor.
We have shown that this factor becomes important if the data is very sparse and the
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locally stored rating profiles cannot be updated for each prediction.
Finally, if the optimal number of positively contributing ratings is known for a

specific dataset, no more than this number of ratings should be maintained locally in
order to optimize recommendations and minimize the local cache. The true number of
useful peers is however highly dependent on the size and the nature of the network.
Therefore, a thorough investigation of the network aspects is essential for a good
recommendation system.
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3
Exploiting Positive and Negative Graded

Relevance Assessments for Content
Recommendation

Social media allow users to give their opinion about the available content
by assigning a rating. Collaborative filtering approaches to predict recom-
mendations based on these graded relevance assessments are hampered by the
sparseness of the data. This sparseness problem can be overcome with graph-
based models, but current methods are not able to deal with negative relevance
assessments.
We propose a new graph-based model that exploits both positive and negative
preference data. Hereto, we combine in a single content ranking the results
from two graphs, one based on positive and the other based on negative pref-
erence information. The resulting ranking contains fewer false positives than
a ranking based on positive information alone. Low ratings however appear
to have a predictive value for relevant content. Discounting the negative in-
formation therefore does not only remove the irrelevant content from the top
of the ranking, but also reduces the recall of relevant documents.

This chapter is published as: Maarten Clements, Arjen P. de Vries, and Marcel J. T. Reinders. Ex-
ploiting Positive and Negative Graded Relevance Assessments for Content Recommendation.
In K. Avrachenkov, D. Donato, and N. Litvak, editors, WAW09: Proceedings of the 6th Inter-
national Workshop on Algorithms and Models for the Web-Graph, LNCS 5427, pages 155-166.
Springer-Verlag, Berlin, Heidelberg, February 2009.
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3.1 Graded Relevance Assessments

The popularity of online social media encourages users to manage their online iden-
tity by active participation in the annotation of the available content. Most of these
systems allow their users to assign a graded relevance assessment by giving a rating
for a specific content element. Many people use these ratings in order to convey their
opinion to the other network users, or to organize their own content to gain easy
access to their favorite files.

Collaborative filtering methods use the created rating profiles to establish a simi-
larity between users or items. This similarity is often based on the Pearson correlation
which has proven to be an effective measure to incorporate positive and negative
feedback while compensating for differences in offset or rating variance between
users [12; 53; 112; 133]. Because these similarity functions derive the similarity
based on the overlapping part of the users’ rating profiles these methods perform
poorly in sparse data spaces [113; 59].

Graph-based methods have shown to effectively deal with extremely sparse data
sets by using the entire network structure in the predicted ranking. Most of these
methods have been developed to estimate a global popularity ranking in graphs with
a single entity type, like websites [99; 70]. These methods are generally not adapted
to negative relevance information and do not provide personalized rankings for each
network user.

Using a personalized random walk over two graphs we separately compute a rank-
ing based on positive and negative preference information. We combine these two
rankings and compare the result on two real data sets. We discuss the positive and
negative effects of the proposed method compared to recently proposed graph-based
ranking models.

3.2 Graph Combination Model

We define two bipartite graphs G+ = 〈V, E+〉 and G− = 〈V, E−〉 where the set of
vertices consists of all users and items V = U ∪ I (U is the set of users uk ∈ U (with
k ∈ {1, . . . , K}) and I is the set of items il ∈ I (with l ∈ {1, . . . , L})). The set of
edges (E+/E−) consists of all user-item pairs {uk, il}. The weight of the edges is
determined by the value of the rating, which will be discussed in Section 3.3.

We propose to use a random walk model to obtain a ranking of the content in both
graphs. A random walk can be described by a stochastic process in which the initial
condition (Sn) is known and the next state (Sn+1) is given by a certain probability
distribution. This distribution is represented by a transition matrix A, where ai,j

contains the probability of going from node i (at time n) to j (at time n + 1):

ai,j = P (Sn+1 = j|Sn = i) (3.1)

The initial state of all network nodes can now be represented as a vector v0 (with∑
i v0(i) = 1), in which the starting probabilities can be assigned. By multiplying

the state vector with the transition matrix, we can find the state probabilities after
one step in the graph (v1). Multi step probabilities can be found by repeating the
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multiplication vn+1 = vnA, or using the n-step transition matrix vn = v0An. The
number of steps taken in the random walk determines the influence of the initial state
on the current state probabilities.

The random walk is a Markov model of order 1 (or Markov chain), because the
next state of the walk only depends on the current state and not on any previous
states, which is known as the Markov property:

P (Sn+1 = x|Sn = xn, . . . , S1 = x1) =

P (Sn+1 = x|Sn = xn)
(3.2)

If A is stochastic, irreducible and aperiodic, v will become stable, so that v∞ =
v∞A [142]. These limiting state probabilities represent the prior probability of all
nodes in the network determined by the volume of connected paths [127]. In order
to make these conditions true, we ensure that all rows of A add up to 1 by normalizing
the rows, that A is fully connected, and that A is not bipartite.

We include self-transitions that allow the walk to stay in place, which increases
the influence of the initial state. The self-transitions are represented by the identity
matrix S = I, so that the weight of the self-transitions is equal for all nodes.

We distinguish the transition matrix based on positive and negative ratings (T+

and T−). The random walk over the positive graph estimates the ranking of relevant
documents, while the walk over the negative graph estimates the ranking of most
irrelevant documents. We create the positive transition matrix as follows:

T+ =

[
αSK (1 − α)R+

(1 − α)R+T
αSL

]

where R+ contains the positive preference information (See Section 3.3). To make
sure the graph is fully connected we add an edge with weight ε between all node
pairs, which allows the walk to teleport to a random node at each step. The final
transition matrix is now given by: A+ = (1−ε)T+ +ε 1KL

K+L , where 1KL represents the
ones matrix of size K + L. The teleport probability ε is set to 0.01 in all experiments.
The negative transition matrix is constructed similarly.

We now create the initial state vector with a zero array of length K + L and
set the index corresponding to the target user to one v0(uk) = 1. Multiplying the
state vector with one of the transition matrices gives either the estimation of relevant
(v+

1 = v0A+) or irrelevant (v−
1 = v0A−) content for the target user. The first step

gives the content annotated by the user himself, while subsequent steps (v+
n ;v−

m) give
an estimate of the most similar users and content.

Both random walks produce a state probability vector which indicates either the
positive or negative information that we have about each node. To obtain a single
content ranking, we combine the parts of the state vectors that correspond to item
nodes (v+(K+1, ..., K+L) and v−(K+1, ..., K+L)). The combined content ranking
is obtained by simply subtracting the negative state probabilities from the positive
state probabilities (v+

n −v−
m). Intuitively, this subtraction ranks the content according

to the difference in positive and negative information in the neighborhood of the
target user.
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3.2.1 Self-transition (α) and Walk Length (n)

The number of steps in the random walk (n) determines how strongly the final rank-
ing depends on the starting point (target user uk). The speed of convergence is deter-
mined by the self-transition probability α. Because all nodes have equal self-transition
probability, the total number of non-self steps (Q) after n steps through the graph is
a binomial random variable with probability mass function (PMF):

PQ(q) =

{ (
n
q

)
αq(1 − α)n−q q = 0, . . . , n

0 otherwise
(3.3)

Where PQ(q) is the probability of q non-self steps (Q = q).
If a large value is chosen for α, most of the probability mass will stay close to the

starting point. A small value of α results in a walk that quickly converges to the stable
state probability distribution. Based on earlier experiments we fix the self-transition
probability (α) to 0.8 [23; 29].

3.3 Data

3.3.1 LibraryThing (LT)

LibraryThing1 is a social online book catalog that allows its users to indicate their
opinion about their books by giving a rating. Based on these preference indications
LT gives suggestions about interesting books to read and about people with similar
taste. The popularity of the system has resulted in a database that contains over 3
million unique works, collaboratively added by more than 400,000 users.

We have collected a part of the LibraryThing network, containing 25,295 active
users2. After pruning this data set we retain 7279 users that have all supplied a
rating to at least 20 books. We remove books that occur in fewer than 5 user profiles,
resulting in 37,232 unique works.

The user interface of LibraryThing allows users to assign ratings on the scale from
a half to five, the distribution of the ratings in our LT data sample is shown in Fig-
ure 3.1a.

3.3.2 MovieLens (ML)

To validate the reproducibility of our results, we also use the data set from Movie-
Lens3, which is a well known benchmark data set for collaborative filtering algo-
rithms. ML consists of 100,000 ratings for 1682 movies given by 943 users. In this
data, ratings have been given on a scale of 1 to 5, 1 being dreadful and 5 excellent.
Figure 3.1b shows the rating distribution in the ML data.

1http://www.librarything.com
2Crawled in July 2007
3http://www.grouplens.org/
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Figure 3.1: Rating distribution of a) LibraryThing and b) MovieLens.

3.3.3 Rating to Edge Weight

Figure 3.2 gives the edge weights we assign to various ratings. The positive rating
matrix R+ integrates the ratings 3−5 and the negative rating matrix R− contains the
ratings 1

2 − 21
2 where the largest weight is assigned to the lowest rating. Although a 3

is the average rating that can be given in most user interfaces (by clicking a number of
stars) it is generally regarded as slightly positive, because more than half of the stars
are filled when a user has clicked the third star.

The LT data consists of a total of 749401 ratings, using the split between positive
and negative ratings as indicated in Figure 3.2, R+ will have a density of 2.53 · 10−3

and R− has a density of 2.34 · 10−4. The MovieLens data has a much lower positive
bias and the indicated data split results in R+ with density of 5.20 · 10−2 and R−

with density of 1.10 · 10−2. The difference in positive bias can be explained because
watching a movie is a social experience while reading is not. Users will therefore
watch more movies they do not like (because your friends want to see it) than read
books they do not like.

The resulting graphs (G+, G−) have a clear power-law structure, which is com-
mon to socially organized data [93]. However, the long tail is reduced due to the
pruning step in which the users and items with few connections were removed.

LibraryThing ½ 1 1½ 2 2½ 3 3½ 4 4½ 5  
MovieLens   1  2  3  4  5 

Edge Weight 5 4 3 2 1 1 2 3 4 5 

      R–     R+

Figure 3.2: Conversion of ratings to edge weights.
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3.4 Experimental Setup

3.4.1 Data Split

To obtain a fair comparison without overfitting the model to the data we split the data
sets in two equal parts, see Figure 3.3. First we use the training users to estimate the
optimal model parameters, by finding the optimal value for our evaluation criterion.
We remove 1/5 of the ratings of 1/5 of the training users (validation set) and use the
rest of the data to predict the missing values. We average the results over 5 different
independent splits.

Using the optimal model parameters we evaluate the different models on the test
set. We again remove 1/5 of the user profiles and use a 5-fold cross validation to
obtain stable results.

Items

U
se

rs

1/2
Train

1/2
Test

Optimal
parameters

Model
performance

Training
Graph

1/5

4/5

1/5

4/5

 4/5 1/5
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Graph

(Step 1) (Step 2) (Step 3)

(Step 4) (Step 5)

Figure 3.3: Splitting the data in a train and test set.

3.4.2 Evaluation

3.4.2.1 NDCG

To evaluate the predicted content ranking we use the Normalized Discounted Cumu-
lative Gain (NDCG) proposed by Järvelin and Kekäläinen [62].

We first create a gain vector G with length L (all items) of zeros. In this gain
vector the predicted rank positions of the held-out validation items are assigned a
value equal to the edge weights in the training graph (See Figure 3.2), called the
gain.

In order to progressively reduce the gain of lower ranked test items, each position
in the gain vector is discounted by the log2 of its index i (where we first add 1 to the
index, to ensure discounting for all rank positions > 0). The Discounted Cumulative
Gain (DCG) now accumulates the values of the discounted gain vector:

DCG[i] = DCG[i − 1] + G[i]/ log2(i + 1) (3.4)

The DCG vector can now be normalized to the optimal DCG vector. This optimal
DCG is computed using a gain vector where all test ratings are placed in the top of
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the vector in descending order. Component by component division now gives us the
NDCG vector in which each position contains a value in the range [0, 1] indicating the
level of perfectness of the ranking so far. We use the area below the NDCG curve as
score to evaluate our rank prediction.

We want to evaluate the prediction of relevant content with respect to the pre-
diction of irrelevant content. We separately compute the predictive value for positive
test items (NDCG+) and negative test items (NDCG−) and use the fraction of the two
NDCG measures as evaluation method: NDCG+/NDCG−. This measure will be opti-
mal if the predicted ranking contains the positive test items at the top (in descending
rating order) and the negative test items at the bottom.

3.4.2.2 PPV@20

The positive predictive value indicates the fraction of recommended relevant docu-
ments (true positives, TP) with respect to incorrectly recommended irrelevant docu-
ments (false positives, FP):

PPV =
TP

TP + FP
(3.5)

We assume that the system will give 20 recommendations and therefore compute the
PPV on the top 20 of the ranked list (PPV@20).

Compared to precision, which is defined as TP/n (where n is the number of rec-
ommended documents), PPV does not regard the unassessed recommended items
as incorrect recommendations. Because we are interested in evaluating the number
of relevant compared to negatively assessed documents we use PPV as evaluation
method.

3.4.2.3 Recall@20

Recall indicates the number of true positives with respect to all relevant documents in
the database and is defined as:

Recall =
TP

TP + FN
(3.6)

where FN indicates the number of unrecommended relevant documents (false nega-
tives).

3.5 Experiments

3.5.1 Optimizing Relevance Ranking

We separately optimize the ranking of positive and negative content on the training
set. We first look at the NDCG+ for increasing walk length on the positive graph
using v+ to obtain the content ranking. Figure 3.4a shows that for both LT and ML
the optimal ranking is achieved after only 5 steps through the graph. The NDCG+

quickly converges to a stable value when the state vector reaches the global content
popularity.



40 | Chapter 3

N
D

C
G

+

N
D

C
G

 –

n m

(a) (b)

0 20 40 60 80 100 120 140 160 180 200
0.1

0.2

0.3

0.4

0 20 40 60 80 100 120 140 160 180 200
0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160 180 200
0.035

0.04

0.045

0.05

0.055

0.06

0 20 40 60 80 100 120 140 160 180 200
0.06

0.07

0.08

0.09

0.1

0.11

N
D

C
G

 +

N
D

C
G

 –

LT
ML

LT
ML

Figure 3.4: a) Optimization of the walk length over the positive rating graph (Max. at n = 5
for both data sets). b) Optimization of the prediction of the prediction of negative test items
(Max. at m = 81 for LT and m = 23 for ML).

The absolute difference between the performance on the two data sets can be
explained by two factors. The ML users on average rated a larger fraction of the
available items. Therefore, the probability of finding a relevant test item at the top of
the ranking is higher, independent from the used method. Also, the more extensive
user profiles result in denser social graphs, allowing the model to make more accurate
predictions.

3.5.2 Optimizing Irrelevance Ranking

Figure 3.4b shows the NDCG− (prediction of irrelevant content) optimized on the
negative rating graph (ranking based on v−

m). It is clear that a longer walk over the
graph is needed to obtain an optimal prediction. Also, the optimal negative ranking
is reached for a smaller number of steps on the ML data than on the LT data. This
is expected because the ML data contains more negative ratings; in other words, the
negative graph of ML is much more dense than the LT negative graph. On a dense
graph the state probability vector of the random walk will converge more quickly
to the stable distribution (i.e., the graph has a shorter mixing time). Because the
random teleport probability is very low (ε = 0.01) it will only slightly decrease the
mixing time.

3.5.3 Test Results

Table 3.1 summarizes the evaluation results on the test set for recommendation using
different model settings. We first compare our proposed model using the difference
of state probabilities as ranking function (v+

n − v−
m) to the ranking based on positive

information alone (v+
n ). We now use the optimal settings of the walk length param-

eters m and n derived from the individual optimizations on the training set. If we
can correctly predict both positive and negative content, subtracting the probability
of reaching a node in the negative graph from the state probability in the positive
graph will give a ranking with good content at the top and bad content at the bottom.
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Table 3.1: Test results for both datasets. NDCG is abbreviated with N.

Data Method Evaluation measure

N+ N+/N− PPV@20 Recall@20

LT v+
5 0.310 5.279 0.973 0.474

v+
5 − v−

81 0.195 7.466 0.976 0.362
v5 0.318 4.909 0.967 0.496

ML v+
5 0.491 3.538 0.944 0.596

v+
5 − v−

23 0.167 6.165 0.971 0.278
v5 0.508 3.246 0.925 0.627

Our proposed combination model outperforms the ranking based on positive in-
formation if we use the fraction NDCG+/NDCG− or PPV@20 as evaluation measure.
This means that the top of the ranking contains relatively more positive test items than
negative test items. However, we also observe a large drop in recall (and NDCG+),
meaning that our method finds a lower absolute number of relevant test items. Ap-
parently the use of the negative graph not only removes irrelevant content from the
top of the ranking, but also penalizes some of the relevant content.

Alternative model vn is obtained using all ratings as positive evidence in the tran-
sition matrix (Rating 1

2 . . . 5 mapped to edge weights 1 . . . 10 in R). The test results
show that this method has a higher PPV@20 and NDCG+ than the ranking based on
v+

n . This shows that the negative training items even have a small predictive value
for relevant content.

3.5.4 Understanding the Test Results

Figure 3.5 shows the position of the positive (Rating ≥ 3) and negative (Rating <

3) test items in the predicted content ranking, aggregated over all test users. The
ranked list is split into bins of 100 items and the graphs plot the number of test items
that fall into a certain bin. The gap between positive and negative ratings in the
top part of the ranking is clearly larger in the combined model, based on v+

n − v−
m

(Figure 3.5b,d) than in the purely positive model, based on v+
n (Figure 3.5a,c). This

finding corresponds to the increase in NDCG+/NDCG−.

As expected by previously discussed results, we observe a peak at the bottom
of the ranking in Figure 3.5b and 3.5d, both in negative and positive test items. This
confirms the effect that the negative graph also penalizes some of the relevant content,
meaning that some of the relevant content has more connections to the target user in
the negative graph than in the positive graph.
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Figure 3.5: a) LT: Aggregated ranking using only the positive graph after 5 steps (v+
5 ).

b) LT: Aggregated ranking for the combined method (v+
5 − v−

81). c) ML: Aggregated rank-
ing using only the positive graph after 5 steps (v+

5 ). d) ML: Aggregated ranking for the
combined method (v+

5 − v−
23).

3.6 Discussion

3.6.1 Graph-based Ranking Models

Graph-based algorithms have shown to be very effective to find a global ranking of
hyperlinked documents in the web graph [99; 70]. Also in other domains have these
methods shown to be useful ranking mechanisms.

Gyöngyi et al. adapted traditional PageRank in order to reduce the rank position of
spam web-sites [46]. Analogous to our approach they try to find an optimal document
ranking in a graph with many unjudged documents. The small subset of documents
that has received a relevance judgement is used as seed of the random walk. Besides
the difference in domain, this method mostly differs from our model in the fact that
the authors assume a global binary opinion on the content quality, while our approach
is based on the individual preference annotations.

Gori and Pucci used the graph of referenced scientific research papers to obtain a
paper ranking, based on a user’s history [45]. User-based recommendation algorithms
were described as a graph-theoretic model by Mirza et al. [87]. In their model the
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graph is represented by hammocks (the set of 2-step connections between 2 nodes),
based on rating commonality between users. By taking multiple steps over the user
similarity graph their algorithm finds latent relations between users. These models
are based on graphs with a single type node (items and users relatively), an extra step
needs to be taken to relate the content to the target user.

Different methods have been proposed that represent both users and items into
a single graph. Huang et al. applied spreading activation algorithms on the user-
item graph to explore transitive associations among consumers through their past
transactions and feedback [59]. Fouss et al. [37] removed the diffusion parameter
and used the average commute time between nodes in the graph-based representation
of the MovieLens database to derive similarities between the entities in the data.
These algorithms showed to be very effective on binary relevance data. They ignored
the numeric value of the rating provided by the user and only used the fact that a user
did or did not see/buy the content (binary relevance assessments).

The random walk model with self-transitions has been applied on the graph con-
structed by graded relevance information based on queries and clicks on images [29].
In this work Craswell and Szummer explained the soft clustering effect that is ob-
tained with a medium length random walk. This effect is clearly visible in our results
on the negative rating graph, where an average length walk finds the cluster of irrel-
evant content and therefore outperforms direct relations or the popularity ranking.

We have to the best of our knowledge for the first time used a graph-based ranking
model on the positive and negative user-item graph. Because of the different graph
statistics we used the walk length parameter to individually optimize the prediction of
relevant and irrelevant content. The combined model showed that the information in
negative relevance assessments can be used to improve the positive predictive value
of the content ranking, by pushing some documents to the bottom of the ranking.

3.6.2 Selective Assessment Explains Positive Predictive Value

We have shown that negative preference indications not only predict irrelevant con-
tent, but also have a predictive value for positively rated test items. This can be
explained by the fact that users in a social content systems do not randomly select
the content to assess. People carefully select the content to read/view based on prior
knowledge about theme, author etc. Based on this prior knowledge the user assumes
that he will like the content (otherwise he would not view it).

Although the user gives a low rating to the selected content, this content can still
be related to other documents the user does like, because of features corresponding to
prior knowledge. In those cases, negative items are connected to books that the user
would give a high rating. In the negative graph, these items incorrectly drag some of
the relevant content with them to the bottom of the ranking. Perhaps, modeling more
aspects of the content will separate the relevant and irrelevant recommendations.
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4
The Task Dependent Effect of Tags and Ratings

on Social Media Access

Recently, online social networks have emerged that allow people to share their
multimedia files, retrieve interesting content, and discover like-minded people.
These systems often provide the possibility to annotate the content with tags
and ratings.
Using a random walk through the social annotation graph, we have combined
these annotations into a retrieval model that effectively balances the personal
preferences and opinions of like-minded users into a single relevance ranking
for either content, tags or people. We use this model to identify the influence of
different annotation methods and system design aspects on common ranking
tasks in social content systems.
Our results show that a combination of rating and tagging information can
improve tasks like search and recommendation. The optimal influence of both
sources on the ranking is highly dependent on the retrieval task and system
design. Results on content search and tag suggestion indicate that the profile
created by a user’s annotations can be used effectively to adapt the ranking to
personal preferences. The random walk reduces sparsity problems by smoothly
integrating indirectly related concepts in the relevance ranking, which is espe-
cially valuable for cold-start users or individual tagging systems like YouTube
and Flickr.

This chapter is published as: Maarten Clements, Arjen P. De Vries, and Marcel J. T. Reinders.
The Task Dependent Effect of Tags and Ratings on Social Media Access. ACM Transactions on
Information Systems, 28(4), October 2010.
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4.1 Introduction

The most widely discussed change in Internet usage over the last few years is the in-
crease in interactivity and user contribution. Dynamic websites are used to distribute
videos or photos, share opinions about books and movies, find interesting people or
just maintain contact information of relations. People actively use the provided com-
munication tools to get in touch with other network users and discuss their opinion on
the available content. In this way, people build up an on-line identity and make new
friends within the network. The addition of these social aspects in on-line databases
has strongly increased their popularity, which in turn has resulted in massive unstruc-
tured data collections, created by the collaborative effort of regular Internet users.

Many of these networks focus on the distribution of content that does not carry a
clear contextual description by itself. In these social content systems, many people are
willing to participate in the annotation of otherwise difficult to retrieve files. People
actively tag the available content and enjoy giving their opinion by supplying a rating.
Although most people use tagging to organize their own content collection, it has been
shown that social tagging results in semantically descriptive annotations that can be
used for content retrieval by the entire network [44; 83].

Most of the work on tagging systems or folksonomies has been focused on the un-
derstanding of the social phenomena underlying the use of these systems. Much less
research has evaluated the actual retrieval performance of the entities in social con-
tent systems. In this work we discuss the design issues in social content systems with
respect to the effectiveness of common retrieval tasks. More specifically, we evaluate
how the users’ tagging and rating rights and the representation in the interface affect
the possibilities to adapt retrieval tasks to the personal user preference.

To describe the retrieval tasks in a social content system, we suggest a taxonomy
that can always provide the user with relevant content, tags and people (see Fig-
ure 4.1). The top level gives the tasks that exist when no context (query) is specified
by the user. Many research activities have focused on the recommendation of items
(T1), often by first finding a group of similar users (T3), which is known as collabo-
rative filtering [12; 106]. Because most of these algorithms were developed on rated
databases without tags, not much attention has gone to the recommendation of tags
(T2), which could be useful to initiate a browsing session.

The second level in our taxonomy indicates the view on the network after the
user has selected either an item, tag or another user. In total, this describes twelve
tasks that apply for personalization in a collaboratively tagged database. Including
common tasks like: suggesting tags when interesting content has been found (T5),
retrieving relevant content by using tags as queries (T7), getting help from experts on
a certain topic (T6,T9), making new friends (T12) and using your friends to discover
relevant content (T10,T11).

We propose to use a single model that serves all these tasks. To this end, we adopt
a previously used random walk variant, and show that it can be used for all these
tasks by slightly modifying the parameters. Because the random walk integrates latent
relations in the relevance ranking, this model is robust against sparsity problems that
often hamper collaborative filtering based approaches [113; 59] and problems arising
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Figure 4.1: A taxonomy of the tasks in a social content system that apply for personaliza-
tion. Level 1 shows the three tasks that apply to users that just enter the system (T1-T3).
Level 2 indicates the tasks that arise after the user has selected either an item, tag or
another user (T4-T12).

from synonymous terms in social tagging systems [8; 44]. We use the parameters in
our ranking model to identify the effect of system design choices on the effectiveness
of common retrieval tasks (Section 4.5). To show that this model is valid for our
analysis we compare the ranking performance to recently proposed algorithms in
Section 4.6 and discuss other related work in Section 4.7.

4.2 Personalization Model

For the relevance ranking of the tasks in our taxonomy we propose to use a random
walk over the graph, created by all annotations. A random walk is a simple stochastic
process in which the initial condition (Sn) is known and the next state (Sn+1) is
given by a certain probability distribution. This distribution can be represented by a
transition matrix A, where ai,j contains the probability of going from node i (at time
n) to node j (at time n + 1):

ai,j = P (Sn+1 = j|Sn = i) (4.1)

The state of the random walker is described by the probability distribution vn, where
vn(i) = P (Sn = i) and

∑
(vn) = 1. The initial state probability of all network nodes

can now be represented by v0, which indicates the starting points of the random
walk. By multiplying the state vector with the transition matrix, we can find the
state probabilities after one step in the graph (v1 = v0A). Multistep probabilities
can be found by repeating the multiplication vn+1 = vnA, or equivalently using the
n-step transition matrix vn = v0An. The number of steps taken in the random walk
determines the influence of the initial state vector. If A is stochastic, irreducible and
aperiodic, v will become stable (so that v∞ = v∞A) and it will contain the prior
probability of all nodes in the network.

Figure 4.2 shows how we define the social graph and the transition matrix. We
create a tripartite graph G = 〈V, E〉 where the set of vertices consists of all users, items
and tags V = U ∪ I ∪ T and the set of edges (E) is determined by the information
derived from the social annotations. How we set the weight of the edges depends on
the available information in the social content system and is discussed in Section 4.3.
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Table 4.1: The most important symbols used in this chapter.

T1−12 A retrieval task
U, uk The set of all users and user k

I, il The set of all items and item l

T, tm The set of all tags, and tag m

D Three dimensional matrix containing tag assignments
UI,UT, IT Projections of D

R Two dimensional matrix containing ratings
A The transition matrix
S The state of the random walk
v The state probability distribution
n The number of steps of the random walk
α Self-transition probability
β Probability of making a User-Tag step
γ Probability of making an Item-Tag step
δ Probability of making a Tag-Item step
θ Initial state probability of the query element

We include self-transitions that allow the walk to stay in place, increasing the
influence of the initial state. We set the weight of the self transitions equal for all
nodes. This removes the tri-partite structure of the graph.

We normalize the weights of the outgoing edges so that the edges to each of the
other node types sum up to one, and combine them in the transition matrix A, using
the parameters α, β, γ and δ as shown in Figure 4.2. In this model α ∈ [0, 1] is the
weight of the self transitions and β, γ, δ ∈ [0, 1] determine the influence of the binary
relations between the three different types of network elements (users, items and
tags). Because of the normalization step the rows of A sum to 1 so they can be used
as transition probabilities.

According to the desired task from our taxonomy (Figure 4.1), the random walk
is initiated by assigning the starting positions in the initial state vector v0. For all
level 1 tasks (T1−3), the index corresponding to the target user uk ∈ U is set to one:
v0(uk) = 1. When only the target user is used as starting point, the state vector
vn estimates the probabilities that users, items and tags are relevant to that user.
Depending on the number of steps in the random walk (n) the probability estimate is
mostly influenced by the user’s personal preferences or the global popularity (v∞).

For level 2 tasks (T4−12), the initial state vector is initialized with two values:
v0(uk) = 1−θ and v0(x) = θ, where x indicates the user, item or tag, selected at level
1. (E.g. tm ∈ T , represented in Figure 4.2.) The parameter θ (θ ∈ [0, 1]) determines
the influence of the personal preferences. When θ is set to 0, the state probabilities
only depend on the preferences of the target user, and will therefore result in the
same prediction as level 1 tasks. When θ = 1 the probabilities depend only on the
selected query element, so the result will not be personalized for uk. If 0 < θ < 1 the
model derives the probabilities, based on both the target user and the query element.

The final ranking is obtained by ordering the elements according to their state
probability in vn. Depending on the task, the part of vn that corresponds to either
user, item or tag nodes should be sorted. This ranking will also contain the train-
ing data (i.e. the annotations created by the target user himself). Depending on the
task, these training nodes should be removed from the final ranking. A content rec-
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Figure 4.2: A social content system is represented as a tripartite graph, containing users,
items and tags as nodes. The weight of the edges between these entities is determined
by the annotations created by the network users. We add self transitions to allow the
random walk to stay in the same node with a certain probability. Together, these edges
constitute transition matrix A. In the initial state vector v0, one or more starting nodes
can be assigned according to the task from Figure 4.1. The result of the walk vn contains
the relevance probabilities of all three network elements. The model parameter α is used
to tune the influence of self transitions. The weight of the edges between the three node
types is controlled by β, γ and δ. For level 2 tasks, θ sets the personalization weight.

ommendation (T1) for example, should only contain items that the target user has
not seen before. However, when tags are suggested to annotate newly found content
(T5), previously used tags should also be recommended instead of only suggesting
new tags.

The random walk directly models the social browsing behavior of network users.
It estimates the probability that a user will reach a certain node after a few clicks in
the network. The edge weight parameters model the probability of navigating from
one entity type to another and the self transitions represent a user preferring the
current results over another click. Therefore, the assumption is that by using this
model, users will need fewer clicks to find the network elements that are relevant to
their information needs.

4.2.1 Self Transition (α) and Walk Length (n)

Depending on the number of steps in the random walk (n), the final ranking is mostly
influenced by the starting points (target user and query) or the background distri-
bution (v∞). The influence of the background after a certain number of steps is
determined by the self-transition probability α. A large self transition probability al-
lows the walk to stay in place (by taking many self steps), reinforcing the importance
of the starting point, where a small value of α results in a walk that quickly converges
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Figure 4.3: The PMF of the walk distance after a fixed number of steps through the social
graph, for α = 0.2 and α = 0.8. The left distributions are based on a random walk with self
transitions, where we set n = 13 as an example. The distributions on the right arise from
a random walk with back teleport which is commonly applied with a fully converged state
vector (n = ∞). Note that the walk distance does not equal the shortest path distance
from the starting node.

to the stable background distribution.
Figure 4.3 shows the walk distance (number of non-self steps) for α = 0.2 and

α = 0.8 at n = 13. Because all nodes have the same self transition probability, the
walk distance (Q) after n steps through the social graph is a binomial random variable
with the probability mass function (PMF):

PQ(q) =

{ (
n
q

)
αq(1 − α)n−q q = 0, . . . , n,

0 otherwise
(4.2)

where PQ(q) is the probability of being at distance q.
The PMF shows that if a large value is chosen for α, most of the probability mass

will stay close to the starting point and a long tail is created toward more distant
nodes. With a self transition probability < 0.5 most of the probability mass will move
to the next state with each step, creating a long tail on the left side of the distribution.

We will compare this model to the more commonly used random walk with back
teleportation, which allows the surfer to return to the starting node with a certain
probability (Right model in Figure 4.3). The back teleport is used in personalized
pagerank [99] and has shown to be a competitive model for network edge prediction
(rooted pagerank in [76]) and can be used for recommendations and tag suggestions
(part of the FolkRank method in [58; 63]). In this model, with teleport probability α2,
the probability distribution of the walk distance converges to PQ(q) = α2 ∗ (1 − α2)q

when n → ∞. This distribution always assigns the highest value to the nodes closest
to the starting position, while the self transition model allows more distant nodes to
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be more relevant (for increasing n). Because the entities directly connected to the
user (network distance equal to one) are already known to him we believe that the
self-transition model is more appropriate to find new relevant content.

4.2.2 Edge Weights (β,γ,δ)

Three parameters (β,γ,δ) are used to tune the edge weights in the graph. For each
node type the probability of making a transition to the other two node types is based
on any of these parameters, e.g.: P (Sn+1 ∈ I|Sn ∈ U) = 1 − β and P (Sn+1 ∈ T |Sn ∈
U) = β. We will not strive to optimize all these parameters for all tasks, but only
show the effect of the relevant parameters given a certain task. With this approach,
we evaluate the influence of the different types of annotations on the retrieval tasks.

4.2.3 Query Weight (θ)

Most tag-based retrieval systems use the selected tag as query term and rank the
content according to popularity or freshness. Experience from the field of information
retrieval has shown that a single term alone, absent other information like the user’s
interests or current context, is often not semantically expressive enough to clearly
define the user’s information need [120]. Also other retrieval tasks might benefit
from extra information besides the query element.

In our model, we consider the selection of a tag, item or user as an indication of
the user’s context. In these level 2 tasks we will enrich the original ranking (based
on the user) by integrating this context information. In the initial state vector, both
the target user and the query element (either user, item or tag) are assigned a value
according to θ, so the random walk will have 2 starting points. The weight of θ

determines the amount of context adaptation.

This model can easily be extended by allowing more selected elements as input
query, which corresponds to adding extra levels (below level 2) in our task taxonomy.
When the user more clearly specifies his context, by selecting more entities, the model
can incorporate this information in the initial state vector and derive a more context
aware ranking. Many websites show the user’s breadcrumb trail1 at the top of the
user interface, indicating the route a user has taken to the current view by clicking
the links on the website. By adapting the initial state vector, the random walk model
can use the entire breadcrumb trail created by the user while browsing through user,
item and tag links. Previous work has shown that when the user selects enough query
terms the information need will be sufficiently clear so that personalization will have
no more influence on the ranking [25].

1http://en.wikipedia.org/wiki/Breadcrumb navigation
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4.3 Data

4.3.1 Data Characteristics

Tagging In currently popular social content systems, there is a clear distinction be-
tween collaborative tagging systems (e.g. CiteULike2 and Del.icio.us3) and individual
tagging systems (e.g. YouTube4 and Flickr5). Many systems that allow user-generated
content injection are individual tagging systems (IT) where only the injector of the
content is able to assign the tags. In these systems, which are also known as narrow
folksonomies [132] many people (who do not contribute but only consume content)
will not build up a profile of the tags they prefer. In collaborative tagging (CT), every
user can tag any piece of content [44]. In this way, users implicitly indicate which
aspects of the content correspond to their personal interest. Also, in CT systems the
aggregated tags of the network users create a relevance distribution for each content
element, resulting in a broad folksonomy [132]. Furnas et al. already stated in 1987
that people often choose different terms to annotate content, resulting in low pre-
cision retrieval [40]. They argued that a theoretically optimal system would allow
unlimited aliasing to describe the content (containing an infinite amount of annota-
tions). We advocate that collaborative tagging approaches unlimited aliasing and is
therefore a solution to enable effective personalized content retrieval.

Another option in tagging design is to remove the relation between users and their
tags. In the well-known movie database IMDb6, registered users can add or remove
keywords for movies. They collaboratively build on a single collection of tags for
each available movie. These keywords are however different from collaborative tags,
because the relation between individual users and tags is not stored (or at least not
visible from the outside). We will refer to this type of tagging system as anonymous
tagging (AT). The study of anonymous tagging is interesting because it indicates how
well the tag description created by the users of one system could be used by another
community. Also, anonymous tagging could be compared to the use of key-words
extracted from the content’s metadata.

Marlow et al. defined two types of tag storage methods; A set-model maintains a
single list of tags for each content element, while a bag-model stores the aggregated
tags of all users [83]. ATbag can be derived from CT by storing only the item-tag
relations and ATset can be derived from ATbag by binarizing the item-tag relations.

If users, items and tags are seen as separate entities, the act of tagging creates
a ternary relation among them [86]. These relations can be stored in a 3D matrix
D(uk, il, tm), where each position indicates if user uk ∈ U (with k = {1, . . . , K})
tagged item il ∈ I (with l = {1, . . . , L}) with tag tm ∈ T (with m = {1, . . . , M}).

Even collaborative tagging systems are usually very sparse. Different methods
have been proposed to efficiently work with this data. Symeonidis et al. used a Higher
Order Singular Value Decomposition (HOSVD) technique to reduce the dimensional-

2http://www.citeulike.org
3http://del.icio.us
4http://www.youtube.com
5http://www.flickr.com
6http://www.imdb.com/
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Figure 4.4: Common system designs with respect to content annotation. Collaborative
tagging (CT) creates the richest annotation network, Individual tagging (IT) results in a
very sparse graph, Anonymous tagging (ATset) discards the user specific information and
Rating (R) allows the user to give explicit preference indications. Anonymous tagging with
bag storage (ATbag) is similar to ATset, but with weighted Item-Tag relations.

ity of the data [126]. Similar to Mika [86] and many other related works, we propose
to sum over the 3 dimensions of D to obtain (see also Figure 4.4):

UT matrix: UT(uk, tm) =
∑l=L

l=1 D(uk, il, tm), indicating how many items each user
(uk) tagged with which tag (tm). In AT systems this matrix is not stored.

IT matrix: IT(il, tm) =
∑k=K

k=1 D(uk, il, tm), indicating how many users tagged
each item (il) with which tag (tm). In IT/ATset systems, this will be a binary matrix.

UI matrix: UI(uk, il) =
∑m=M

m=1 D(uk, il, tm), indicating how many tags each user
(uk) assigned to each item (il). In AT systems this matrix is not stored.

The impact of the independence assumptions made while flattening the D matrix is
discussed in Section 4.8.

The three tagging matrices contain information about the relevance between pairs
of nodes in the social graph. To reduce the impact of very popular elements, the
matrices are normalized using TF-IDF weighting [110]. For example, the weighted
User-Tag matrix is computed by:

UTTF-IDF(uk, tm) = UT(uk, tm) ∗ log

(
K∑k=K

k=1 sgn(UT(uk, tm))

)
(4.3)

where the sign function (sgn) sets all values > 0 to 1.
The weighted matrices together give the set of edges in the social graph: E =

{〈uk, il〉|UI(uk, il) > 0} ∪ {〈il, tm〉|IT(il, tm) > 0} ∪ {〈uk, tm〉|UT(uk, tm) > 0}
Rating Besides tagging, the social aspects of networks stimulate people to share
their opinion about the provided content. In many interfaces people can assess the
quality of the content by giving a rating. Work on collaborative filtering systems has
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shown that these ratings can effectively be deployed to predict a user’s interest and
make predictions about his future behavior [[12]; [53]; Wang, J. et al. [133]].

Earlier work on collaborative tagging systems proposed to create the social graph
from the three projections of the ternary user-item-tag relation [86; 58]. Although
the UI matrix contains interesting information about the users’ tagging behavior, the
relation between the number of tags assigned to an item and the preference of the
user toward that item is unclear. Therefore, when modeling the users’ preference, we
propose to replace the tag based User-Item matrix by the matrix based on the users’
ratings. We will discuss the effect of this choice on the personalized search task in
Section 4.5.2.

The rating matrix (R(uk, il)) contains the users’ preference for the available con-
tent, often expressed on a five or ten point scale. Previous work has shown that even
low ratings can be used to retrieve relevant content [24]. Based on the observations
in this work we will directly use the value of the ratings as the weight of the User-
Item edges E = {〈uk, il〉|R(uk, il) > 0}. The transition probability in the random
walk is based on the relative differences between a user’s ratings (and tag assign-
ments), therefore there is no need to normalize the rating profiles before they can be
compared (unlike the usual approach in collaborative filtering models [12]).

4.3.2 Datasets

LibraryThing (LT) LibraryThing7 is an online web service that allows users to create
a catalog of the books they own or have read. A user can tag and rate all the books
he adds to his personal library. The social aspects of this network give the users
the opportunity to meet like-minded people and find new books that match their
preference. The popularity of the system has resulted in a database that contains over
3 million unique works, collaboratively added by more than 400,000 users. We are
not aware of any other open network of this size where both collaborative tags (≈ 40
million) and ratings (≈ 5 million) are actively used.

We have collected a trace from the LibraryThing network, containing 25,295 ac-
tively tagging users8. The most popular tags represented in a large cloud (> 1000
tags) on LibraryThing9 are used as seeds of the crawl. For each of these tags we get
the list of people who have used the tag more than once and for all these users we
download their entire book list. To get the users who have clearly expressed their
preference we filter the data and retain 7279 users who have all supplied both ratings
and tags to at least 20 books. We remove books and tags that occur in fewer than 5
user profiles, resulting in 37,232 unique works and 10,559 unique tags. This pruned
dataset contains 2,056,487 UIT (User-Item-Tag) relations, resulting in a density of
7.2 ∗ 10−7 (fraction of non empty cells in D). The derived R, UT and IT matri-
ces have a density of respectively: 2.8 · 10−3, 5.2 · 10−3 and 2.0 · 10−3. This pruning
step is a fair choice, as it represents the typical recommender system deployment;
these systems do not give recommendations to users who have provided insufficient
preference information. Movielens, for example, asks new users to rate at least 15

7http://www.librarything.com
8Crawled in July 2007. Available from http://dmirlab.tudelft.nl/users/maarten-clements
9http://www.librarything.com/tagcloud.php
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movies before they can start using the system10. Table 4.2 summarizes the statistics
of the datasets. In this table ‘Annotations’ refers to the total number of applied tags
or ratings, while ‘Posts’ indicates the number of User-Item relations. For tags there
can be more annotations than posts as a user can choose to assign multiple tags when
posting a single resource. The rows ‘Users’, ‘Items’ and ‘Tags’ give the total number of
unique users, items and tags in the dataset.

As expected in data organized by human activity, we found that the number of
books and annotations in the users’ catalogs follow a power-law distribution [[7],
[49]]. We expect that this data is comparable to collaboratively annotated movies, as
books and movies comprise the same themes and storylines that can be categorized
by tags.

The user interface of LibraryThing allows users to assign ratings on the scale from
a half to five. Half ratings can be given by clicking a star twice. The distribution in
Figure 4.5a shows that half ratings occur about 4 times less frequently than whole
ratings. Figure 4.5b shows the relation between the rating and the number of tags
given to an item. The upward trend shows that there is a slight correlation between
these two variables. This graph also shows that books with half ratings tend to get
more tags. This might indicate that the half ratings are used by people who put more
effort into the categorization of their books. To substantiate this claim we define
two user groups, the active annotators for whom at least 40% of the ratings are half
ratings and the lazy annotators who have never used half ratings. If we plot the
average number of tags per rating for these two groups we can clearly see that the
people who use half ratings give more tags than the people who do not. There is
even a slight bump at ratings 1/1.5 which indicates that the active annotators try to
explain why they give a book a low rating.

LibraryThing also allows users to assign ‘Friends’ and connect to people with ‘Inter-
esting Libraries’. In our pruned dataset, 665 users have one or more ‘Friends’ and 532
users have indicated at least one ‘Interesting Library’. Experiments in Section 4.5.4
validate relevant user prediction (Figure 4.1, T3) using these relations.

Movielens (ML) Sen et al. discussed a tagging application that was implemented
in the Movielens system and used for evaluation with a select user group [116]. In

10http://www.movielens.org

Table 4.2: Data statistics

LT ML MLR IMDb RSDC08

Rating CT Rating CT Rating ATset CT

Annotations 749401 2056487 15865 27887 100000 40150 709019
Posts 749401 749401 15865 15865 100000 - 214188
Users 7279 7279 443 443 943 - 2346
Items 37232 37232 2511 2511 1682 1682 186280
Tags - 10559 - 2400 - 2479 56722
Density R 2.8 · 10−3 - 1.4 · 10−2 - 6.3 · 10−2 - -
Density UI - 2.8 · 10−3 - 1.4 · 10−2 - - 4.9 · 10−4

Density UT - 5.2 · 10−3 - 1.1 · 10−2 - - 1.1 · 10−3

Density IT - 2.0 · 10−3 - 3.2 · 10−3 - 9.6 · 10−3 6.2 · 10−5
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Figure 4.5: LibraryThing data statistics: a) The distribution of rating occurrences in the
pruned dataset. b) The average number of tags assigned, given the rating for all users,
only active annotators and only lazy annotators.

January 2009 the Grouplens research lab released this dataset with 10 million ratings
and 100,000 tags for 10,681 movies by 71,567 users collected with the Movielens rec-
ommender system11. Many users have supplied a rating without giving tags. We only
keep the annotations that contain both rating and tags and remove users with fewer
than 5 items, and items/tags with fewer than 2 users. The resulting data statistics are
summarized in Table 4.2.

Movielens Rating - IMDb Tagging (MLR-IMDb) Grouplens also provides a well
known benchmark dataset for collaborative filtering algorithms, containing a collec-
tion of 100,000 user ratings. The data consists of 943 users who have all given at
least 20 ratings to the collection of 1682 movies [52].

To study the effectiveness of anonymous tagging systems, we enrich the rating in-
formation with keywords extracted from the IMDb12 database, using the urls included
in the data descriptions of the Movielens set13. The combined IT matrix is pruned,
so that all tags are used on at least 5 movies, resulting in a set of 2,479 unique tags.
Because IMDb has an anonymous tagging system without tag aggregation (ATset) we
expect that the IMDb keywords will be less valuable for personalized retrieval tasks
than the LT dataset.

Wang, X. et al. [135] showed that enriching the Movielens ratings with the movie
titles can improve recommendation performance. A plausible explanation for this
performance increase could be the presence of many sequels and series in the Movie-
lens data (e.g. there are eight ‘Star Trek’ episodes in the Movielens data). In our
experiments however (not shown), we found little evidence for the value of titles for
recommendations when these series are ignored.

RSDC’08 To improve the state of the art of tag suggest systems, the European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery in

11http://www.grouplens.org/
12http://www.imdb.com/
13Crawled in December 2007. Available from http://dmirlab.tudelft.nl/users/maarten-clements
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Figure 4.6: Splitting the data in a train and test set.

Databases (ECML PKDD) has organised the RSDC’08 Discovery Challenge14. For this
challenge a dataset from the social bookmark and publication sharing system Bib-
Sonomy15 was provided. BibSonomy allows users to annotate both bookmarks and
publications with tags. The goal of the challenge was to learn a model that effectively
predicts the tags a user will use to describe the content.

We have cleaned the data following the RSDC’08 Discovery Challenge’s guidelines
by removing system tags (like ‘imported’), removing non-word characters and con-
verting all words to lower-case. Because this data does not have any ratings we use
the UI matrix to create the user-item edges. The resulting data statistics are included
in Table 4.2. We will use this dataset to compare our findings on the tag suggestion
task (T5) with the results on LibraryThing data in Section 4.5.3.

4.4 Experimental Setup

4.4.1 Data Preparation

In order to estimate the performance of our model without overfitting to the data, we
split the data in two equal parts (see Figure 4.6). Half of the users are put into the
training set and the other half constitute the test set (Step 1), together with all the an-
notations they created (ratings and tags). We now use the training set to optimize the
model parameters by holding out 1/5 of the user’s annotations of 1/5 of the training
users (the validation set, Step 2). We use our model to predict the held-out content
and optimize the mean of the NDCG measure discussed in the next section (Step 3).
For the smaller datasets (ML and MLR-IMDb) we use stratified cross validation, by
repeating step 2 and 3 for five equally sized non-overlapping selections of validation
items.

We then use the optimal model parameters to compute the performance on the test
set, by holding out again 1/5 of the user profiles of 1/5 of the users, and computing the

14http://www.kde.cs.uni-kassel.de/ws/rsdc08/
15http://www.bibsonomy.org/
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NDCG (Step 4). To evaluate the stability of the results we compute the performance on
all 5 non-overlapping splits of validation users and show the variance in Section 4.6.

The validation items are selected randomly from the user profiles, as opposed to
temporal selection. Non-temporal selection allows us to do cross-validation by select-
ing different sets of test items. The user-scenario matching this selection procedure is
the recommendation of unseen relevant content instead of predicting future content.

In the rest of this chapter, all graphs will visualize parameter optimization on the
training set, while tables give a comparison on the test set.

4.4.2 NDCG Evaluation

To evaluate the suitability of the predicted content ranking for any of the item rank-
ing tasks (Figure 4.1, T1,4,7,10) we use the Normalized Discounted Cumulative Gain
(NDCG) proposed by Järvelin and Kekäläinen [62].

We first create a gain vector G with length L (all items) of zeros. In this gain
vector, the predicted rank positions of the held-out validation items that correspond
to a positive opinion r ∈ {3, 3.5, 4, 4.5, 5} are assigned a value of respectively G ∈
{1, 2, 3, 4, 5}. This mapping is done because we do not want to predict content that has
received a low rating and we want to reduce the impact of slightly relevant content
on the evaluation. We do not normalize the rating profiles before assigning the gain,
because we expect that the high offset in the ratings (See Figure 4.5a) is due to the
fact that people tend to carefully select the content to view or read. As a result, people
have read many more books they like than books they do not like, while normalization
by mean rating would assume that people only like about half of the books they read.

In order to progressively reduce the gain of lower ranked test items, each value
in the gain vector is discounted by the log2 of its index i (where we first add 1 to the
index, to ensure discounting for all rank positions > 0). The Discounted Cumulative
Gain (DCG) now accumulates the values of the discounted gain vector:

DCG[i] = DCG[i − 1] + G[i]/ log2(i + 1) (4.4)

The DCG vector is normalized by comparing it to the optimal DCG vector. This optimal
DCG is computed using a gain vector where all test ratings are placed in the top of
the vector in descending gain order. Component by component division now gives us
the NDCG vector in which each position contains a value in the range [0, 1] indicating
the level of perfection of the ranking so far. We use the area below the NDCG curve as
score to evaluate our rank prediction. In the experiment section we show the mean
of the NDCG over all validation users.

4.5 Experiments

4.5.1 Content Recommendation

Task description We first look at the task of content recommendation (Figure 4.1,
T1), which is a well known task in the field of collaborative filtering. For this task we
will use the LT data (CT+Ratings), the ML data (CT+Ratings) and the MLR-IMDb
data (ATset+Ratings). In the random walk model we implement this task by setting
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Figure 4.7: The NDCG for increasing self-transition probability and walk length for LT (left)
and ML (right). The increase in self-transition probability procures a slower diffusion of the
walk. On the Movielens data, a longer walk is needed to reach the optimal performance.
Note that no even steps are shown as they would not produce a content ranking if α = 0.

the initial state vector according to the target user, v0(uk) = 1. After each number of
steps n we rank the part of the state vector vn that corresponds to the items, according
to the state probabilities.

We will first describe the parameter optimization of the random walk model and
then compare the test results for some selected settings. In Section 4.6 we will com-
pare our results to the M-LSA model proposed by Wang, X. et al. [135] and the gradi-
ent descend SVD method from Funk [39].

Self transitions increase model robustness To set a baseline method and observe
the effect of the self transitions, we walk randomly over the user-item graph of LT and
ML. By setting γ = 0 (item-tag step) and β = 0 (user-tag step), no edges are created
to the tag nodes, so the walk will only spread over the user and item nodes based
on rating information. Figure 4.7 shows the mean NDCG for increasing walk length
(n) and self transition probability (α). On the LT data the performance is optimal
for 3 steps (n = 3), when the nearest unseen objects are found (see also Figure 4.8).
The performance slowly drops when the ranking is more popularity based (n → ∞).
The results at n = 3 resemble a simplified version of traditional collaborative filtering
where the content ranking is based on the ratings of the users with most similar
content (Figure 4.8, path U-I-U-I). We use this method as a baseline to compare with
the tag-included model.

On the ML data, the optimal performance is reached after a longer walk through
the graph (Figure 4.7, right). A random walk has been shown to have a soft cluster-
ing effect that relates similar concepts before converging to the background probabil-
ity [127; 29]. A longer walk therefore allows users with small profiles (few items and
tags) to find the cluster of content that matches their preference, while for users with
many items and tags in their preference profile, all relevant content can be found with
very few steps. In ML the average user has a much shorter preference profile than in
LT (as we use a less strict pruning policy, requiring only 5 items per profile for ML
as opposed to 20 for LT). Therefore, the need for clustering is more prominent on
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Figure 4.8: The first steps in the social graph starting from a user node. The first candidate
items for recommendation are found 2 or 3 steps away from the user: Path U-I-U-I: Items
of users who have rated the same content as me; Path U-I-T-I: Items that match the tags
assigned to my items by the community; Path U-T-U-I: Items of users who have used the
same tags as me; Path U-T-I: Items that match the tags I have previously used.

the ML dataset. When we repeat the parameter optimization in LT for only the users
with a small profile (fewer than 50 annotations), we observe similar results and see
that a longer walk is needed to reach the optimal prediction for these users (Data not
shown).

We can see that the self transition probability does not influence the value of the
optimal NDCG on the user-item graph. Only on the ML data the optimal NDCG slightly
drops for very small values of α. A high self transition is however useful to increase
the robustness of the model, because it makes the model less dependent on the walk
length parameter. The slower diffusion of the walk assures that all nodes are reached
(and therefore a complete ranking of all network elements can be made), while most
of the probability mass remains close to the starting nodes (see Figure 4.3). In the
following experiments we fix α at 0.8 for both datasets to create a slow diffusion of
the random walk and reinforce the importance of the initial state.

Personal tags are only useful in coherent folksonomies Figure 4.8 shows the first
three steps in the graph when only the target user is used as the starting point (level
1 tasks). The optimization of β (user-tag step) on the LT dataset (see Figure 4.9)
indicates that a user’s personally created tags do not contribute to the content ranking.
This can be explained because the tags the target user would prefer for the validation
items are not necessarily assigned by other people, so the path U-T-I might not exist
yet. The tags that other people assigned to your training items appear to be the more
predictive tags to retrieve the validation items (path U-I-T-I).

Running the same experiment on the ML data shows that the personal tags are
much more useful in this dataset. The optimal NDCG is found at β = 0.2, see Fig-
ure 4.10. This can be explained by the fact that ML operates a tag suggestion system,
which makes users select tags that are also in use by other users. Consequently, these
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tags also appear useful to find new content annotated by these other users. We con-
clude that the observed difference between LT and ML demonstrates the benefit of
tag suggestion, as it can produce a more coherent folksonomy, where people use the
same terms to annotate the same content.

Ratings and tags both improve ranking To compare the performance of a ranking
based only on ratings to a tag based ranking, we fix β at zero and look at variations
in γ (item-tag step). Figures 4.11 and 4.12 show the NDCG results on the training
set of LT and ML, respectively. The γ parameter balances the influence of users who
rated similar content (path U-I-U) versus tags that describe the target user’s content
(path U-I-T). The results clearly show an optimum when both aspects are taken into
account (point F).

To get a valid comparison of the different parameter settings, the performance
of the optimal and test points in the graphs is computed on the test set. Table 4.3
gives the mean NDCG for the different parameter settings on both datasets. For com-
pleteness it also contains the NDCG for a randomized item list (A) and the global
popularity (B, where we assume full convergence at n = 51 for LT and n = 101 for
ML). The significance of the performance difference with standard collaborative fil-
tering (γ = β = 0, point D) is presented by the p-value computed with a Wilcoxon
signed rank test [139]. Hereby, we test the hypothesis that the differences between
the paired NDCG scores of both models come from a distribution with a median of
zero. Small p-values indicate that the underlying distributions are significantly dif-
ferent. To show the actual improvement we have also included the percentage of
change with respect to the reference model. Notice in particular that the combined
model (point F) is significantly better than standard collaborative filtering (point D).

On the LT dataset we have also computed the optimal result when no TF-IDF
weighting is applied to the input matrices (Table 4.3). The performance improvement
over our reference model based on ratings drops from +8.8% with TF-IDF weighting
to only +0.3% without. This shows that the downweighting of highly connected nodes
in the graph allows for the discovery of more query specific content.
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Tag-based ranking outperforms user-based ranking Table 4.3 shows that the
ranking based on the tags applied by all users (point E, Figure 4.8 path U-I-T) out-
performs the ranking based on similar users (point D, Figure 4.8 path U-I-U). On the
ML dataset this difference is even more significant (Figure 4.12), which can again be
explained by the more coherent folksonomy in Movielens.

Ramakrishnan et al. showed that recommender systems based on users’ rating
similarity can be abused by content advertisers and can reveal personal details for
users with rare content interests [103]. Recommendations based on path U-I-T-I do
not make use of other users’ ratings and are therefore more robust against privacy
attacks. The good results at parameter setting E show that a system that needs to
guarantee the privacy of its users, can effectively use the aggregated tags (in CT or
ATbag systems) to predict content recommendations without exposing other users’
preferences.

Table 4.3: Content recommendation in collaborative tagging: test results

Data Model β γ δ n NDCG Diff. p-value

A LT Random ranking 0.5 0.5 0.5 1 0.086 -73% < 1 ∗ 10−15

B LT Global popularity 0.5 0.5 0.5 51 0.233 -27% < 1 ∗ 10−15

C LT Personal tags (U-T) 1 0.4 0.5 21 0.271 -15% < 1 ∗ 10−15

D LT Coll. filtering (U-I-U) 0 0 0.5 3 0.318 Ref Ref
E LT Network tags (U-I-T) 0 1 0.5 3 0.326 +2.5% 1.4 ∗ 10−4

F LT Combined 0 0.4 0.5 3 0.346 +8.8% < 1 ∗ 10−15

LT No TF*IDF 0 0.8 0.5 3 0.319 +0.3% 3.8 ∗ 10−2

A’ ML Random ranking 0.5 0.5 0.5 1 0.082 -57% < 1 ∗ 10−15

B’ ML Global popularity 0.5 0.5 0.5 101 0.177 -7.1% 4.4 ∗ 10−6

C’ ML Personal tags (U-T) 1 0.8 0.7 33 0.232 +21% 2.4 ∗ 10−10

D’ ML Coll. filtering (U-I-U) 0 0 0.7 55 0.191 Ref Ref
E’ ML Network tags (U-I-T) 0 1 0.7 33 0.237 +24% 1.0 ∗ 10−12

F’ ML Combined 0.3 0.8 0.7 25 0.243 +27% 5.3 ∗ 10−13
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Tag aggregation is essential To evaluate the effectiveness of an anonymous tagging
system, we repeated the experiments on the combined MLR-IMDb data. Because
this dataset does not contain the information about User-Tag relations (β = 0, δ =
1), the first step through the graph will always be U-I. Therefore, we start with the
optimization of γ, which determines the second step in the graph (See Figure 4.8).
Figure 4.13 gives the NDCG for variations of n and γ. The shape of the plane is
almost similar to the previous results on LT (Figure 4.11), with the exception that
CF (Point G) now outperforms tag based ranking (Point H). To verify this result, we
convert the LT data into anonymous tagging with set-storage by setting the UT matrix
to zero and binarizing the values in the IT matrix, and we obtain Figure 4.14. We
also observe the performance drop in the LT data when γ goes to 1. Results on the
test set are shown in Table 4.4. The performance difference between test point K and
E solely results from the binarization of the I-T edge. We conclude that the relevance
distribution that arises from the aggregation of collaboratively contributed tags (in
CT or ATbag systems) is essential for a retrieval system based on tagging information.

Conclusions The results on this task have shown that the exploitation of the graph-
ical structure of the data can improve recommendations, especially for users with few
annotations. The clustering effect of a medium length random walk allows for dis-
covery of relevant content that is not directly linked to the current preferences of the
user.

Table 4.4: Content recommendation in anonymous tagging: test results

Data Model γ n NDCG Diff. p-value

G MLR-IMDb Coll. filtering 0 3 0.513 Ref Ref
H MLR-IMDb Tag based 1 3 0.293 -43% < 1 ∗ 10−15

I MLR-IMDb Combined 0.2 5 0.521 +1.6% 0.50

J LT-ATset Coll. filtering 0 3 0.318 Ref Ref
K LT-ATset Tag based 1 3 0.302 -5.0% 0.05
L LT-ATset Combined 0.3 3 0.345 +8.5% 3.2 ∗ 10−3
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Deployment of tag suggestion in a tagging interface results in more useful tags
with respect to content recommendation. The comparison between the LT and ML
datasets shows that when users select tags that are also used by other people, the
resulting preference profile can be used to find more related content.

Content ranking based on the aggregated tags of the items in a user’s catalog (γ =
1, path U-I-T) can outperform a ranking based on similar users, which corresponds
to (a simplified version of) collaborative filtering (γ = 0, path U-I-U). Ranking on
aggregated tags is more robust to security issues like content promotion or discovery
of private user information. To obtain the aggregated item-tag relation, a system
needs to be designed as either CT or ATbag. All datasets showed that the optimal
recommendation should be based on a combination of rating and tagging information.

4.5.2 Personalized Search

Task description To initiate content retrieval, social tags are often shown in a tag-
cloud, a visual depiction of tags in which the more popular tags are typeset in a larger
font or more prominent color. Although many different methods exist to draw these
clouds [67], the relevance of a tag is often based on the global popularity of the
tags in the entire network (e.g. popular tags in Last.fm16). In this way of navigation
only a single popular word is used as a query, resulting in many retrieved documents.
In traditional information retrieval as well as web-search, people often use multiple
word queries in order to disambiguate their information needs.

We see the selection of a tag as an indication of the user’s current context. Because
the user selects only a single term as query, the content ranking cannot be reliably
based on this context alone. We need to find an optimal balance between the ranking
based on the user’s personal preference and the selected tag (Figure 4.1, T7).

In the previous section we optimized the completely personal content ranking.
Now we will first find the optimal edge weight settings for completely unpersonalized
search and then optimize θ and n to combine the user and tag into a single query. We
slightly alter the evaluation process for this task. For each user we separately compute
a content ranking for each of the tags appearing in the validation set. We now try to
optimize the ranking of the validation items that were originally annotated by this
user with this tag. Here we make the assumption that the user would use the same
terms for the annotation of his content as he would use to retrieve this content. For
this task we will use the graph created by the ratings and collaborative tagging data
of LT.

Tag based queries need multistep walks We will first optimize the edge weight
parameters for unpersonalized content retrieval (by setting θ = 1, and thus v0(tm) =
1). Starting from a tag, the first step through the social graph depends on δ, where
δ = 0 implies a T-U step (and δ = 1 a T-I step). Figure 4.15 shows the optimization
of δ and n on the training set. We see that, similar to the results on T1 (content
recommendation), the connection between user and tag does not improve content
ranking on this dataset (the optimum has δ = 1).

16http://www.last.fm/tags
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We also find that the optimal number of steps is larger than one (n = 13), which
means that the random walk improves effectiveness over a content ranking based on
direct relations only. Since there are no spelling or language rules, tagging systems
usually contain many synonymous terms, therefore content that has not been tagged
extensively will often miss the terms used as a query by other people. The random
walk can find these latent relations that are not explicitly present in the data.

Combining user and tag outperforms frequency ranking Both user based content
ranking and tag based content ranking have been shown to perform optimally when
the user-tag relation is not taken into account. We now combine the user and tag into
one query balanced by θ. We set the edge weight parameters β (user-tag step) and δ

(tag-item step) to the optimal values derived from previous results (β = 0 and δ = 1,
Figures 4.9 and 4.15). Surprisingly, this setting corresponds to using an aggregated
anonymous tagging system (ATbag). We fix γ (item-tag step) at 0.5, and focus on the
optimization of the personalization strength θ. The results of Figure 4.16 then show
that personalized retrieval gives a more accurate prediction than both completely
personal and completely tag based queries (point R).

We define two baseline methods: Random (M): the mean NDCG for a random
ranking, and Global Popularity (N): the NDCG at n = 51, with θ = 0.5 (We assume that
the state vector is fully converged, so that v51 ≈ v∞ and it is independent of θ). We
now compare four different model settings, derived from Figure 4.16 (see Table 4.5).
Frequency Search (O): taking one step in our random walk model (n = 1) with θ = 1
gives the ranking according to the number of times the tag was applied to the data.
Because we have applied TF-IDF weighting on the TI matrix this setting corresponds
to using a simple vector space model with TF-IDF weights. We see this parameter
setting as the most standard implementation of tag based search in social content
systems and therefore use it as the reference method. Random Walk Search (P): using



68 | Chapter 4

0
0.2

0.4
0.6

0.8
1

11121314151
0

0.05

0.1

0.15

0.2

0.25

0.3

n

N
D

C
G

 

Optimal
Test point 

O
P

N

M

Q

R

Figure 4.16: Optimization of the personalization influence θ and the walk length n on the
LT training data (β = 0, γ = 0.5, δ = 1). We show the mean NDCG for an odd number
of steps from 1 to 51. The optimum is reached at θ = 0.2 and n = 11 (R). Note that the
NDCG at n = 1 and θ = 0 (M) is equal to a random ranking, because users have no direct
links to potentially interesting unseen content.

the optimal number of steps at θ = 1 (n = 13) represents the optimal performance
with our model without personalization. Compared to frequency search, this method
integrates more indirectly related concepts. Recommendation (Q): when the model
is completely personal (θ = 0) the ranking will not depend on the tag. Obviously
this model setting gives lower performance, we see however that the performance is
higher than the popularity ranking, indicating a strong coherence within the users’
libraries. Personalized (R): the optimal parameter setting of our model (θ = 0.2, n =
11).

The results show that the combination of personalization and smoothing with in-
directly related concepts (by increasing n) improves significantly over traditional fre-
quency based retrieval. Our personalized search model outperforms frequency search
by 19% and the random walk model without personalization (Random walk search)

Table 4.5: Personalized search: Results on the test set of LT. Popularity search is taken
as reference. Using a Wilcoxon signed rank test, all results are significantly different from
the reference point with a p-value < 1 ∗ 10−15.

Data Model θ n NDCG Diff.

M LT Random 0 1 0.048 -80%
N LT Global Popularity 0.5 51 0.148 -39%
O LT Frequency Search 1 1 0.241 Ref
P LT RW Search 1 13 0.268 +11%
Q LT Recommendation 0 3 0.188 -22%
R LT Personalized 0.2 11 0.286 +19%
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Figure 4.17: Optimization of the personalization influence θ in an individual tagging sys-
tem created from the training set of LT. Because the random walk slowly converges in this
sparse graph, we take the point of full convergence (point S) at n = 101. The optimum is
reached at θ = 0.5 and n = 27 (W)

gives a gain of 11%. If we compare the personalized model (R) to the random walk
search (P), the integration of the user’s history gives an additional improvement of
7%.

Individual tagging We adapt our data by removing all collaborative tags to evaluate
the benefit of a collaboratively annotated collection over individual tagging. We con-
struct the individual tagging graph by randomly selecting a single user per book and
using only this user’s annotations as edges (this user is assumed the uploader). We
use the tags that would be assigned by the other readers as their queries to retrieve
the held-out content. We are aware that we probably amplify the sparseness in indi-
vidual tagging systems, because a user who is aware that he is the only annotator of
the content might put more effort in his annotation. Because most existing IT systems
allow all users to supply a rating to the data, we still construct the User-Item relation
based on R.

Sparse graph needs longer walk The results on the training set are shown in
Figure 4.17. The most important observation is that a longer walk is needed to reach
the optimal performance. This can be explained by the fact that the reduced number
of edges makes it harder to reach a large amount of relevant content in a small number
of steps.

IT needs integration of latent tag relations We show the results on the test set
in Table 4.6. We observe that the absolute performance is almost twice as low as
the results on the CT system, indicating that individual tagging systems provide less
effective access to the provided content.

The NDCG gain of the personalized model (W) over the non-personal model (U:
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Random walk search) is similar to the previously discussed results on collaboratively
tagged data (0.159 → 0.171 = +7.3%). Compared to results on collaborative tagging,
the random walk on the individually tagged graph shows much more improvement
over frequency search (73% relative improvement). Even the global popularity (S)
gives a more relevant ranking than frequency search (T). This can be explained by
the experimental setup, taking other people’s tags for the same content as queries; in
practice, people choose different terms to describe the same content. Also, individual
users consequently select their own favorite terms, especially when language differ-
ences are concerned [22]. Many synonyms occur in the content annotations but each
user is only connected to few of these terms. The random walk smoothly integrates
related concepts when a user uses his favorite term as query.

To get an impression of the difference in annotations between users, we have
computed the average overlap of the tags that users have assigned to the same item.
We find that the users’ annotations on average have only 0.59 tags in common, which
is only 0.23% of the tags they assign. This corresponds precisely to the variability in
word choice observed by Furnas et al. [40]. Because users associate different terms
with specific content, the retrieval model should take latent semantic relations into
account, especially in individual tagging systems.

Preference indications are essential in individual tagging systems Because much
related work has used the social graph based on tagging information only [58; 72;
86], we have also optimized our model on the graph created with the UI matrix
instead of the R matrix. The UI matrix contains the number of tags a user has
assigned to a certain item, which is a less explicit preference indication compared to
ratings.

We find that the performance in the collaborative tagging graph without ratings
is only slightly lower than the results obtained with rating based edges. With optimal
parameter settings the NDCG drops from 0.286 (point P, Figure 4.16) to 0.285 (data
not shown). This was already indicated by the correlation we found between the
rating and the number of assigned tags (Figure 4.5b). We do however expect that
in a dataset with more negative opinions, the integration of the explicit preference
information might give larger performance gain over tag-based user-item relations,
because it is impossible to assign a negative amount of tags.

If we remove the rating information from the individual tagging experiments and
create the social graph with the tag-based UI matrix, we observe a much more signif-
icant performance drop from 0.171 (Point W, Figure 4.17) to 0.109. This is obvious

Table 4.6: Individual tagging: Results on the test set of LT. Using a Wilcoxon signed rank
test, all results are significantly different from the reference point with a p-value < 1∗10−15.

Data Model θ n NDCG Diff.

S LT-IT Global Popularity 0.5 101 0.115 +25%
T LT-IT Frequency Search 1 1 0.092 Ref
U LT-IT RW Search 1 37 0.159 +73%
V LT-IT Recommendation 0 31 0.140 +52%
W LT-IT Personalized 0.5 27 0.171 +85%
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because many User-Item relations are absent from the UI matrix. In individual tag-
ging systems, people can only tag the content contributed by themselves, therefore
the tagging data will not contain any preference indications about the other content
in the network. The rating possibility allows people to create direct links with all
content, instead of just the injected content.

Conclusions In this section we have found that single term queries can greatly
benefit from personalization, because the user’s annotations give an indication of his
interests. The integration of the user in the query can disambiguate queries with
multiple denotations or specialize queries with a broad semantic meaning.

For personalized search it is essential that a system allows users to create direct
links to their preferred content, either by tagging or rating it. If all users can tag the
content they like (as in CT systems) a weighted preference indication in the form of
a rating does not contribute much to the retrieval performance. Individual tagging
systems are overall less effectively accessible for retrieval tasks as the content is poorly
annotated. To enable personalized retrieval in individual tagging systems ratings
should be used to create user-item relations.

Compared to the user-based content ranking (T1), tag queries need a longer walk
to reach the optimal performance. By increasing the walk length, the content ranking
will not only depend on the query tag, but also integrate latently related concepts and
synonymous terms. Especially in individual tagging systems we have shown that mul-
tiple steps through the network are needed to improve the content ranking, because
of terminology differences between users.

4.5.3 Tag Suggestion

Task description Most users are insufficiently aware of tags in use by others and
they do not want to spend much time on content annotation. Ideally, the social con-
tent system suggests tags from the common vocabulary that fit the users’ intention
or interest, while remaining consistent with other users (Figure 4.1, T5). It has been
claimed that the suggestion of tags when a user is asked to label certain content
would lead to a more coherent folksonomy [44], which was confirmed by our results
in Section 4.5.1.

In this section, we compare the parameter optimization on LibraryThing data to
that using the dataset released with the RSDC’08 Discovery Challenge 2008. We see tag
suggestions as a (personalized) recommendation of tags where the user has indicated
his context by clicking on an item. Our model implements tag suggestion as a random
walk with two starting points, where one walk starts at the target user and the other
at the selected item. We create the initial state vector as explained in Section 4.2. The
target user gets a weight of v0(uk) = 1 − θ and the selected item v0(il) = θ.

Tag suggestions should be based on user and context For this task we will only
discuss the influence of the parameters on the predicted ranking; we will not compare
the actual effectiveness with related methods. Therefore, we do not keep a separate
test set and use the entire LibraryThing dataset (CT + Rating) for the parameter
optimization (We skip step 1,4 and 5 in Figure 4.6). We remove 1/5 of the profiles
of 1000 users as a validation set. In this validation set, the average user has 13 items
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Figure 4.18: F1-measure at 5 of recommended tags on Librarything data (left) and
RSDC08 data (right), both with α = 0.8 and n = 3. The parameter θ ∈ [0, 1] deter-
mines the influence of the selected item. The weight of β and γ sets the use of tag vs.
rating information. We find the optimum at β = γ = 1, and θ = 0.5 for LT and θ = 0.4 for
RSDC08. The result at β = γ = 0 is not shown because this setting produces a random
tag ranking.

(median), collaboratively annotated 54,665 times.
We now vary the contribution of the user walk vs. the item walk, by varying θ.

Because tag assignments are binary relevance judgements, we report the F1 measure
at 5 instead of the NDCG used previously. The F1 measure is defined as the harmonic
mean of precision and recall:

F1 =
2 ∗ Recall ∗Precision
Recall + Precision

(4.5)

Figure 4.18 shows that the optimal tag suggestion combines the other users’ de-
scription of the content with the target user’s previous interests, with equal contri-
bution (θ = 0.5). Although we have shown that a user’s personal tags are irrelevant
for content retrieval, this indicates that the user-tag relations that exist in CT systems
are essential for good tag suggestions. This corresponds to the user tests performed
by Sen et al. who found that 51% of the tag applications are tags that the user has
previously used [116].

We repeat the experiment in the same way on the RSDC08 data and see that the
behaviour of the F1 measure for the parameter variation is very similar (Figure 4.18
right). The main difference is a more abrupt performance drop when the ranking is
based on the user or item alone (θ = 0/1). The reason for this is that many users and
items occur only once in the dataset, which produces a random ranking when that
user/item is used as starting point of the random walk.

Rating information does not improve tag suggestions To evaluate the effect of
rating vs. tagging information we set β = γ (user-tag and item-tag step) and we op-
timize both parameters at the same time (Figure 4.18). We found the optimal results
if only tagging relations are used to create the social graph (β = γ = 1), providing
evidence that high ratings do not correspond to more descriptive tags. Users who like
or dislike certain content are equally capable of describing the topic, therefore the
paths I-U-T and U-I-T do not contribute anything to the tag ranking.
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The optimal value of the walk length is found at n = 3 (data not shown), which
means that the directly connected tags (at n = 1) can be slightly improved with
indirectly related tags found at distance 2 and 3.

When we use the model with optimal parameters on the test set provided with the
RSDC challenge, the tag prediction results drastically drop to 0.0274, using the evalu-
ation script that was used for the challenge (which still corresponds to a fourth place
in the 2008 challenge). Because the train and test set are split temporally, most of the
users and items in the test set do not occur in the training set (and the task represents
the situation of cold-start recommendation). One of the leading contributions to the
challenge has argued that this does not produce a realistic scenario [80]. The results
presented by the two best papers in the challenge show that a significant amount of
data processing on the content titles and descriptions is necessary to account for these
unseen users and items [80; 130].

Related work on tag suggestions Tag suggestions were extensively studied by
Xu et al. who optimized the diversity of the recommendations and integrated the
information about the tags already assigned by the user to the content [141]. This
knowledge about already assigned tags would be implemented in our model by setting
these tags as extra starting points of the walk.

Recent work from Song et al. shows that the textual information in documents can
be used in a real-time tag suggest method when a spectral clustering method is used
to limit the size of the item space [123]. Symeonidis et al. showed that tag suggestion
can be improved with Higher Order Singular Value Decomposition (HOSVD), which
enables the exploitation of latent semantic relations in multi dimensional sparse data.
They evaluated this method on Bibsonomy and Last.fm data and showed that it is
competitive with random walk based approaches [126].

Conclusions Adequate tag suggestions are a combination of the user’s previously
used tags and the tags assigned by other people. If both the user and the item have
already built up a profile of previous annotations, both sources contribute almost
equally in the prediction. Therefore the system needs to store both personal tags and
the aggregated tags from all users, which is only done if the system is designed as
collaborative tagging.

4.5.4 User Recommendation

Task description In our taxonomy we indicated that our model can also be used
for the task of user recommendation (Figure 4.1, T3). The LibraryThing website al-
lows users to indicate which people are friends and who they consider to have an
interesting library. We can use the prediction of interesting libraries as a means to
evaluate our user prediction task. We assume that a user who qualifies someone else’s
library as ‘interesting’ will have a similar taste. It was shown by Schenkel et al. that
search in social networks can be improved by exploiting friends with a similar tag-
ging behaviour [114]. Here we evaluate if a user’s taste is more clearly represented
by his given ratings or tag assignments. We set the weight of β (user-tag step) and
γ (item-tag step) equal to each other. These two parameters control the contribution
of rating- versus tag-based edges to the random walk over the graph. We will keep δ
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Figure 4.19: The mean rank position (MRP) of the people with ‘interesting libraries’ after n

steps in our random walk model (with α = 0.8, δ = 0.5 and γ = β). Optimal at β = γ = 0.2
and n = 13.

(tag-item step) fixed at 0.5.
Using the random walk model we compute a personal user ranking for all people

who assigned any interesting libraries. Because these interesting library assignments
are independent from the tag and rating assignments, we use the entire UIT graph
(7279 users) as training data. We initiate the walk with the target user as start-
ing point (v0(uk) = 1), and rank the user part of the resulting state probabilities
(vn(u1, . . . , uK)) in descending order. Because of the limited number of the social an-
notations (median of 2 interesting libraries out of 7278 users), the dataset is not suited
to study actual effectiveness. Instead, we look at the mean rank position (MRP) of the
validation set (people labeled as interesting library by uk) in the predicted ranked list
(see Figure 4.19). Although the performance is not good enough to actually suggest
people with high precision, the parameter optimization gives us an interesting insight
in the factors that determine a user’s identity. The results on the training data are
summarized in Table 4.7.

Ratings and tags both contribute We can see that an average length walk (around
n = 13) gives the optimal results when β and γ are set to 0.2 (MRP = 954). This
means that user prediction tasks benefit from both rating and tagging information.
Looking at the extreme values of β, a ranking based on rating information alone
(β = γ = 0, optimal at n = 15 with MRP = 973) outperforms the ranking based on
tagging information alone (β = 1, optimal at n = 13 with MRP = 1,190). This again
shows that the users in LibraryThing are more clearly represented by their ratings,
but tagging information can give improvement.

Random walk improves user prediction The optimal MRP also outperforms a
ranking based on directly connected users (MRP = 1,026 at n = 2) and a ranking
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Table 4.7: User recommendation: Training results with independent validation data.

Model β γ δ n MRP

Optimal 0.2 0.2 0.5 13 954
Rating based 0 0 0.5 15 973
Tag based 1 1 0.5 13 1190
Global popularity 0.2 0.2 0.5 51 1618
Direct connections 0.2 0.2 0.5 2 1026
Profile overlap - - - - 1485

based on the global network activity of the user (MRP = 1,618 when n → ∞, for
β = γ = 0.2). To find like-minded users, the LibraryThing website shows the people
with a big catalog overlap, regardless of the rating people have given; this method
results in an MRP of 1,485. In our random walk, the path between two users is
weighted with the ratings the users have given. Besides, tags can find latent user
relations because they can relate different books. Our method generalizes the user
ranking as it predicts a relevance probability for all users, even if they have not read
any identical books.

Conclusions We have seen that a combination of a walk over the user’s content (via
ratings) and his personal tags gives the best user recommendation. This indicates
that besides similar content preference, people are attracted by other people with a
common vocabulary.

Increasing the walk length can improve the ranking over a ranking based on di-
rectly related users. A longer walk does not only take the direct overlap between the
users’ catalogs into account, but also integrates the similarity between the books that
are not shared by both users.

4.6 Model Performance Validity

We have used the random walk model to evaluate the differences between various
ranking tasks in differently designed social content systems. Conclusions from these
comparisons are only valid if the random walk model has any utility on this task.
Therefore, we now compare the random walk results to those of three other recently
proposed ranking methods. We will compare our results on item recommendation
(T1) to the M-LSA method proposed by Wang, X. et al. [135] and the SVD method
described by Simon Funk [39], which has shown to be effective in the Netflix competi-
tion17. We use the personalized search task (T7) to compare the random walk model
with self-transitions to personalized PageRank which uses a back teleport probabil-
ity [99].

SVD model description It has long been known that Singular-Value Decompositions
(SVD) can effectively be used to overcome the sparsity problems in collaborative fil-
tering [42]. The reasoning behind the use of an SVD can be explained as follows. If

17http://www.netflixprize.com/
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the rating matrix is factorized in the form:

R = UΣV T (4.6)

where the columns of V form a set of orthonormal input basis vector directions for R,
the columns of U form a set of orthonormal output basis vector directions for R and Σ
contains the singular values. The most prominent aspects of the data are represented
by the basis vectors corresponding to the largest singular values in Σ. If we now only
use a subset k of these vectors to reproduce the rating matrix (R̂ = UkΣkV

T
k ), the

empty values are filled in with the most likely values based on the most prominent
genres in the data.

Simon Funk proposed to estimate the SVD using a gradient descent algorithm
which optimizes the prediction of the ratings by following the derivative of the pre-
diction error [39]. The parameters in this model are: k, the final number of vectors
in U and V ; L, the learning rate of the gradient descend method and E, the number
of training iterations over the entire dataset.

M-LSA model description One of the recently proposed methods for relevance
ranking of multiple-type interrelated data objects is the M-LSA method of Wang, X.
et al. [135]. Their model extends Latent Semantic Analysis (LSA) by integrating all
pairwise relations between multiple types of objects. We compare our random walk
model to the M-LSA approach on the content recommendation task, because their
solution to a collaborative filtering problem uses an input matrix that is similar to our
transition matrix (A). Their matrix combines the submatrices (R, UT and IT) in
the same way, but without the self transitions. Their model parameters are slightly
different:

AM−LSA =

⎡⎣ 0 αR βUT
αRT 0 γIT

βUTT γITT 0

⎤⎦
where α+β +γ = 1. From this matrix, M-LSA computes the SVD and uses the k most
prominent vectors to find latent semantic relations between users, items and tags.
Using this low dimensional representation of the network, the top-N most similar
users (Nu) to the target user (u) are retrieved (using Pearson correlation on the top
part of the eigenvectors weighted by their eigenvalues). This subset of users is then
used to predict the rating for the target user’s validation items (r̂u,i) by computing a
weighted average (just like standard memory based collaborative filtering [12]):

r̂u,i = r̄u +

∑
v∈Nu

(rv,i − r̄v) · wu,v∑
v∈Nu

wu,v
(4.7)

where wv,u is the Pearson correlation between the profiles of the target user and a user
from his top-N, ru,i is a user’s rating for item i and r̄u is a user’s average rating. The
content ranking is derived by ranking the items according to the predicted ratings.

Random walk outperforms SVD-based methods Using the optimized parameters
of all models (k,L,E for SVD; N ,k,α,β,γ for M-LSA), we compute the NDCG on 5 folds
of the test data and show the resulting box plots for both datasets in Figure 4.20.
Because it is not trivial to include the tagging information in the SVD method we
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Figure 4.20: Test results comparing three settings of the random walk (RW) to SVD and
M-LSA with and without tag information. The parameters are set to the optimal values
derived from the training data.

only report results on the rating matrix. We see that the random walk model clearly
outperforms the other methods on both datasets. If we evaluate the rating prediction
performance by computing the Mean Absolute Error (MAE), both SVD and M-LSA
reach a performance around MAE = 0.7, which corresponds to previously published
rating prediction results [52]. This confirms the observations in related work that
rating prediction methods perform badly on ranking tasks [63; 81].

The optimal parameters of the SVD method indicate that the best ranking re-
sults are obtained when the vectors are not completely trained (both the learning
rule L and the number of iterations E are much smaller than the values reported by
Funk [39]). This means that the features corresponding to the users and items with
most ratings in the training set are closer to their optimal value with respect to rating
prediction. In this set-up the ranking resembles the global popularity ranking of the
random walk model.

The M-LSA model could not find an optimal number of users in the ML dataset.
The available number of similar users is simply too low to give reliable rating predic-
tions. The presented ranking is therefore based on the mean rating of all users in the
test set and does not differ for the model with or without tags. In addition, the M-LSA
model only extends traditional user-based collaborative filtering by defining a differ-
ent similarity function (with integrated tags). It is not trivial to apply this method to
the more complicated level 2 tasks, making the random walk model more generally
applicable.
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Table 4.8: Comparison self transition vs. back teleport

Data Model α/α2 θ n NDCG

LT-CT Self transition 0.8 0.2 11 0.286
LT-CT Back teleport 0.4 0.1 ∞ 0.282

LT-IT Self transition 0.8 0.5 27 0.171
LT-IT Back teleport 0.6 0.3 ∞ 0.164

Back teleportation In Section 4.2.1 we already explained the traditional random
walk with back teleport based on PageRank (Figure 4.3) [99]. We have also optimized
this model for the personalized search task (T7), on the collaborative and individual
tagging graphs. The back teleport model ranks the content according to the stationary
state vector. We found that the state vector does not change significantly after 9 steps
of the random walk and therefore use v∞ ≈ v9.

The results for both models with optimized parameters are summarized in Ta-
ble 4.8. Our experiments show that the back teleport model performs slightly (but
insignificantly) less on the search task. We have chosen to use the self-transition
model because it allows us to use the number of steps as a parameter to identify the
differences between various retrieval tasks and tagging systems. In this way we can
use one model to compare the frequency ranking with the smoothed ranking.

Conclusions Where SVD and neighbourhood methods work well on rating predic-
tion, methods that exploit the graph structure (the random walk family of algorithms)
do better on ranking tasks. The main difference between these two tasks is the fact
that the evaluation of rating prediction does not take unrated items into account. The
ranking evaluation explicitly judges the unrated items as less relevant than the rated
items.

4.7 Related Work

4.7.1 Random Walk

The most widely known application of random walk models for information retrieval
is the PageRank algorithm, first used in the Google search engine [99]. The main
difference with our model is that the standard PageRank algorithm computes a fully
converged state vector (v∞), the principle eigenvector of A, while our model uses the
number of steps as a smoothing parameter. Our experimental results show that the
relevance prediction using v∞ is significantly less effective than when a short or av-
erage length walk is used (Section 4.5). Also, the difference between a ranking based
on rating or tagging information seems to be absent when n → ∞. This can be ex-
plained, because the general concepts (prevalent in the eigenvectors) are represented
in both information sources.

In the first paper on PageRank, Page et al. also describe personalized PageRank, in
which the random surfer jumps back to his starting page with a certain probability
greater than zero [99]. The PageRank of pages close to a user’s start site (or entire
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preference profile in the form of bookmarks) will then be higher. We have shown that
the performance of the self-transition model is comparable to personalized PageRank
on search in social content systems. The self-transitions however allow the walk
to stay close to the query without the need to adapt the transition matrix for each
retrieval task. Only the initial state vector has to be adapted to the target user and
query terms.

The random walk with self transitions has first been used in the work of Craswell
and Szummer [29]. They used a random walk on a query-image graph to retrieve
more relevant images for each textual query. We have applied the model on the
tripartite graph in which users, items and tags constitute the nodes. Because we
directly integrate the network user in the model, the tasks that we describe are more
focused on social interactions, which meets the desires of many current Internet users.
Furthermore, in our model we always start the random walk from the target user,
which makes all retrieval tasks personalized to each user’s individual preferences.

Szummer and Jaakkola studied the soft clustering properties of a medium length
random walk through a graph [127]. It was shown by Xi et al. that this clustering ef-
fect can be used to improve the similarity estimation between different typed entities
that are connected by certain relations [140]. We have seen that depending on the
data and task, increasing the walk length can improve the ranking in the social graph.
The clustering effect allows the walk to find a group of semantically related entities
before converging to the finite state probabilities.

Recommendation algorithms were described as a graph problem by Mirza et al. [87].
By allowing multiple steps over the user-item graph their algorithm finds latent rela-
tions between users and items. Fouss et al. used the Laplacian of the social user-item
graph to compute the average commute time (ACT) of a random walk in order to
provide collaborative recommendations [37]. The ACT replaces the walk-length pa-
rameter with a single distance value between all pairs of nodes. We chose not to
use the average commute time in order to study the effect of the walk length, which
gives an interesting insight in the distance from the query node to the most relevant
elements and therefore the optimal amount of smoothing from the background prob-
ability.

4.7.2 Tagging Graph

A large part of the research on tagging systems has focused on the analysis of sta-
tistical patterns arising by the collaborative effort of network users. Golder and Hu-
berman analyzed the structure of social bookmarking in Del.icio.us. They discovered
recurring patterns of growth dynamics and identified various user tasks that result in
different tagging behavior [44]. Halpin et al. extended this work by investigating the
evolution of collaborative tagging patterns into stable distributions by computing the
Kullback-Leibler divergence between different time points in Del.icio.us [49]. Marlow
et al. used data from the popular photo catalog Flickr to show that individual tagging
systems evolve differently over time [83]. Our results demonstrate that individual
tagging also drastically reduces retrieval performance, which concurs with the vocab-
ulary problem defined by Furnas et al.: people tend to use different terms to describe
content [40].
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Mika extended the common bipartite ontology model by directly integrating the
network user in the graph [86]. The resulting tripartite graph gives more insight in
the dynamics of social networks. Lambiotte and Ausloos used the projected matrices
(UT, IT and UI) of the same graph to visualize the network structure of Audioscrob-
bler18 and CiteULike [72].

Bao et al. used the finite state vector of the tripartite tagging graph for webpage
ranking. They showed that this ranking outperforms normal PageRank, because it
is based on the opinion of web annotators instead of web-creators; and, as web-
annotators are the same people as web-consumers, they conclude that the ranking
function should be based on their opinions [5]. Compared to our work, they try to
predict a globally optimal ranking independent of the query, where we try to optimize
the ranking with respect to a specific user and his or her query.

The model that we have used is strongly related to the FolkRank method by Hotho
et al., which also computes a random walk over the tagging graph [58]. Their random
walk model contains a self-transition probability as well as a back teleport. They use
the difference between the personalized random walk and an unpersonalized random
walk as ranking criterion, resulting in more serendipitous recommendations. They
only performed an empirical evaluation of their model, without clearly explaining
the effect of the model parameters. Jäschke et al. evaluated FolkRank on the tag
suggestion task using a snapshot of Bibsonomy and Last.fm data. This evaluation
showed that random walk based models strongly outperform the classic collaborative
filtering approaches [63], confirmed by our comparisons.

All these methods use the tag-based UI matrix, which does not precisely define
the user-item relation. We showed that there is a correlation between preference
(ratings) and the number of tags assigned in LibraryThing (Figure 4.5b). Also, the
performance between both information sources does not deviate significantly. How-
ever, in individual tagging systems, where most users are not able to apply tags to the
content, the ratings provide essential information that can drastically improve content
retrieval. We therefore argue that when explicit user preference data is available, this
information should be integrated in the social graph, especially in data with few tags
or many negative ratings.

4.8 Discussion

4.8.1 Generalizability

In the generation of our datasets we have applied a pruning policy to reduce the
sparseness of the graph. Based on our work we can therefore not make any assump-
tions about the ranking performance for users with a limited number of items. In
Section 4.3.2 we state that because many deployed recommender systems do not give
recommendations to users who have provided insufficient preference information we
see the proposed pruning step as a fair choice. Based on the differences between the
results on T1 for both the ML and LT dataset we predict that the optimal walk length
will be higher for users with very few annotations.

18http://www.audioscrobbler.net/



The Task Dependent Effect of Tags and Ratings on Social Media Access | 81

Another issue is whether including users with small profiles in the graph would in-
fluence the predicted rankings for users with big profiles. We are confident that these
small users will have little influence on the rankings as the random walk model has
a strong bias towards strongly connected nodes. Therefore, the users and items that
pass our pruning policy will be most influential even when the full data collections
would be considered. Based on these observations we conclude that the optimizations
in this work are accurate for users with a minimum number of items.

4.8.2 Train-Test Split

In the creation of the training and test set we have chosen to remove a set of randomly
selected test items, as opposed to a temporal data split (Section 4.4.1). Primarily, this
experimental design choice was forced because the Movielens data does not contain
time stamps and the ‘reading date’ field in LibraryThing is often empty, making tem-
poral splits impossible. Also, splitting temporally would not allow us to perform cross
validation on the data, reducing the accuracy of finding the optimal model parame-
ters.

The user-scenario matching our selection procedure is the recommendation of un-
seen relevant content instead of predicting future content. This is a common scenario
in our datasets as people often watch movies or read books that are not recently
released.

A completely valid temporal split would take all previous posts into account when
making the current prediction. Therefore, a different data split is needed for each
predicted ranking. In Section 4.5.3 we have seen that if a single fixed temporal split
is applied to bookmarking data, most of the users and items in the test set do not
occur in the training set. Based on related work in the RSDC challenge we conclude
that only with a significant amount of data processing on the content titles and de-
scriptions predictions can be made for unseen users and items [80; 130].

4.8.3 Only Positive Relations

One of the main limitations of the currently used random walk model is that only
positive information can be used in the graph. In rating systems, people however
have the opportunity to assign a low rating, which corresponds to a negative opinion
on the content. We previously studied the effect of explicitly pulling out the lower
ratings and combining the information from the positive and negative graph in a
single ranking [24]. This work showed that a user’s low ratings can actually improve
the ranking of preferred content, because they are usually given to content that has
low quality but is still representative for the user’s preferred genre. Based on these
results we have included the low ratings in the graph as positively weighted edges.

4.8.4 Rank Sinks

In the proposal of the PageRank algorithm, Page et al. discussed the phenomenon
where nodes behave as rank sinks [99]. To overcome this problem the original PageR-
ank description contains a small random jump probability, which allows the walk to
get out of a sink. Because the social annotation graph is undirected, part of the weight
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Figure 4.21: The mean rating given to a book with a certain tag versus the number of
users of that tag. Each circle represents one tag. The solid line indicates the mean of all
ratings and the dotted lines are the mean +1 and -1 standard deviation.

that went through an edge at step n will flow back at step n+1. The undirected edges
therefore remove the sink problem that occurs in directed graphs, and we have not
used this random jump probability in our evaluations.

4.8.5 Tag Relation Flattening

Section 4.3 describes how we flatten the ternary UIT relation, and build our model
from the resulting binary relations. This conversion detaches the context from the
actual usage of the tag. This loss of information could be problematic if a tag is
not used as a content description, but as an opinion about the content. If a user for
example uses a descriptive tag like ‘poetry’, it does not matter on which book he used
this tag, as long as we maintain the relations user-poetry and item-poetry. However,
if someone uses the tag ‘awful’ it is important to know to which book this user has
assigned that tag, because the tag is a description of the user’s opinion about that
book.

Figure 4.21 shows the relation between tags and the average rating assigned to
the books it was used on in LibraryThing. We see that frequently used tags converge
to the mean rating, which means that they do not contain an opinion (e.g. fantasy
and fiction). Only scarcely used tags are sometimes highly correlated to a certain
opinion. The bottom rated tags contain words like: worst book ever, horrible, stupid,
awful, etc. Top rated tags contain: best book ever, incredible, very funny. This graph
also demonstrates genre differences like the fact that poetry contains more works of
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high quality than genres like thriller and chick-lit.
The small standard deviation (r ≈ 0.4) indicates that most tags do not deviate

very far from the mean rating. The tags ‘favorite’ and ‘favorites’ are the most widely
used tags that describe a positive opinion. Below the mean rating ‘unread’ and ‘unfin-
ished’ are the most prominent non-descriptive tags. We have decided not to actively
remove these opinionated tags, in order to obtain an honest evaluation of the effect
of user generated tags on the retrieval performance. The relatively small amount
of opinionated tags gives us the indication that it will not harm our personalization
model.

4.9 Conclusions

Amer-Yahia et al. discussed that all the information contributed by the collaborative
effort of social network users should be combined in order to enable effective content
retrieval in social content systems [2]. By combining both descriptive annotations
(social tags) and preference indications (ratings) in a single personalization model,
we take a step towards the integration of a user’s social network into the existing
categorization and retrieval tasks.

We have shown that a random walk with self transitions is a versatile model to
observe the influence of the design choices in social annotation systems on common
ranking tasks. This model has also proven to be a comparative ranking model for
networked entities. We have used a new dataset collected from LibraryThing, that
contains both collaborative tagging information and preference annotations in the
form of ratings. As far as we know, this dataset contains the largest number of anno-
tations that contain both tags and ratings ever reported.

The random walk can be used to integrate indirectly related entities in the rank-
ing. We have shown that various tasks benefit from the integration of these latent
relations. Especially in sparse graphs, that emerge for example in individual tagging
systems, increasing the number of steps through the graph can greatly improve the
ranking accuracy.

Storing a user’s personally contributed tags is essential to give annotation sugges-
tions for newly found content or to find like minded users. The influence of a users
personal tags on the predicted ranking in content retrieval tasks is however strongly
dependent on the system design. We hypothesize that the implementation of tag sug-
gestions in a system creates a more coherent folksonomy and therefore more useful
personal tags with respect to search.

The relevance distribution of tags that arises in collaborative tagging systems has
shown to be beneficial for effective content retrieval. A social content system should
therefore allow all users to tag all available content.

A weighted combination of rating and tag information from the social network
can improve both recommendation and search tasks. We promote that these different
tasks should therefore not be treated as separate problems but integrated into a single
framework.
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5
The Influence of Personalization on Tag Query

Length in Social Media Search

Social content systems contain enormous collections of unstructured user-
generated content, annotated by the collaborative effort of regular Internet
users. Tag-clouds have become popular interfaces that allow users to query
the database of these systems by clicking relevant terms. However, these single
click queries are often not expressive enough to effectively retrieve the desired
content. Users have to use multiple clicks or type longer queries to satisfy their
information need.
To enhance the predicted content ranking we use a random walk model that ef-
fectively integrates the user’s preference and semantically related query terms.
We use the collaborative annotations from a popular on-line book catalog to
create a social annotation graph and study the effect of personalization and
smoothing for increasing query lengths.
We show that personalization and smoothing allow the user to find equally
relevant content with fewer query terms compared to a frequency based con-
tent ranking with TF-IDF weighing. As expected, we see that the influence of
the random walk model disappears if users type more detailed queries. Finally,
we discuss the observations with respect to synonyms and homographs which
are well known to hamper the performance of information retrieval systems.

This chapter is published as: Maarten Clements, Arjen P. de Vries, and Marcel J. T. Reinders.
The Influence of Personalization on Tag Query Length in Social Media Search. Information Pro-
cessing & Management, 46:403-412, May 2010.
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5.1 Introduction

In the last decade, the explosive use of budget digital cameras and integrated mul-
timedia devices has resulted in an enormous increase in user-generated multimedia
content like movieclips and pictures. On-line databases are actively used to store and
share this content. Recently, the addition of social aspects in these databases has
resulted in a large popularity increase. Millions of people use these social content sys-
tems to publish their creations or to be entertained by other people’s contributions.
Since the contributed data often does not carry a clear contextual description and
there is no librarian to categorize the content, this has resulted in huge collections of
unstructured data.

For future retrieval, many network users actively annotate the content using tags.
Although most people use tagging to organize their own content collection, it has
been shown that social tagging results in semantically descriptive annotations that
can be used for content retrieval by the entire network [44; 83]. To initiate content
retrieval, social tags are often shown in a tag-cloud, a visual depiction of tags in which
the more popular tags are typeset in a larger font or more prominent color. Although
there exist many different methods to draw these clouds [67], the relevance of a
tag is often based on the global popularity of the tags in the entire network (e.g.
popular tags in Last.fm1). In this way of navigation only a single popular word is
used as a query, resulting in many retrieved documents. In traditional information
retrieval as well as web-search engines, people often use multiple word queries in
order to disambiguate their information need. To enable effective content ranking,
users should therefore click multiple times on the suggested tags to make their query
more specific. In this work we show that a personalized system that takes latent
semantic relations into account can aid the user in his search for the desired content.

We focus on social content systems that enable collaborative tagging to anno-
tate the available content. In collaborative tagging systems (like CiteULike2 and
Del.icio.us3), every user can tag any piece of content. In this way, users indicate which
aspects of the content correspond to their personal interest. Also, the aggregated tags
of the network users create a relevance distribution for each content element. Fur-
nas et al. already stated in 1987 that people often choose different terms to annotate
content, resulting in low precision retrieval [40]. They argued that a theoretically
optimal system would allow unlimited aliasing (assigning an infinite number of anno-
tations) to describe the content. We advocate that collaborative tagging approaches
unlimited aliasing and is therefore required to enable effective personalized content
retrieval.

Besides tagging, the social aspects of networks stimulate people to share their
opinion about the provided content. In many interfaces people can assess the qual-
ity of the content by giving a rating. With the introduction of ratings and tags in
on-line databases, content annotation has shifted to subjective categorization. The
combination of these two information sources creates a non-hierarchical database
categorization based on both content quality and topic. Using ratings and tags, we

1http://www.last.fm/tags
2http://www.citeulike.org
3http://del.icio.us
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Figure 5.1: We create the graph based on rating (R) and tag count (UT, IT). Self tran-
sitions (S) allow the random walk to stay in the same node with probability α. Together,
these edges constitute transition matrix A. In the initial state vector v0, the indexes corre-
sponding to the target user and the selected query tags are assigned with weights θ and
1 − θ. If multiple (q̂) tags are selected as query, the weight of (1 − θ) is divided amongst
these tags (v0(tm1,...,mq ) = (1 − θ)/q̂). The result of the walk vn contains the relevance
probabilities of all three network elements.

create a graph of the network, resembling the actual relations in social content sys-
tems. We use a personalized random walk over this graph to evaluate the retrieval
performance of queries with increasing number of terms.

5.2 Personalization Model

For the relevance ranking of the content based on the selected query tags we pro-
pose to use a random walk over the graph, created by all rating and tagging actions.
The random walk has proven to be an effective ranking method for networked enti-
ties [99; 76; 58; 29]. For a more elaborate evaluation of this model on the effect of
different annotation methods on ranking tasks in social media we refer to our previ-
ous work [26]. For clarity we now briefly discuss the model.

A random walk is a stochastic process in which the initial condition is known and
the next state is given by a certain probability distribution. This distribution can be
represented by the transition matrix A, where ai,j contains the probability of going
from node i (at time n) to j (at time n + 1):

ai,j = P (Sn+1 = j|Sn = i) (5.1)

The initial state can now be represented as a vector v0 (with
∑

(v0) = 1), in which the
query elements can be assigned. By multiplying the state vector with the transition
matrix, we can find the state probabilities after one step in the graph (v1). Multi step
probabilities can be found by repeating the multiplication vn+1 = vnA. The number
of steps taken in the random walk determines the influence of the initial state vector
versus the background distribution. Under certain graph conditions, v will become
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stable (so that v∞ = v∞A) and in a completely connected graph it will contain the
background probability of all nodes in the network.

5.2.1 Transition Matrix (A)

Figure 5.1 shows how we create the transition matrix by combining rating and tagging
information. If users, items and tags are seen as separate entities, the act of tagging
creates a ternary relation between them. These relations can be visualized in a 3D
matrix D(uk, il, tm), where each position indicates if user uk (with k = {1, . . . , K})
tagged item il (with l = {1, . . . , L}) with tag tm (with m = {1, . . . , M}).

Even collaborative tagging systems are usually very sparse, therefore we propose
not to use the ternary relations directly, but sum over the 3 dimensions of D to obtain:

UT matrix: UT(uk, tm) =
∑l=L

l=1 D(uk, il, tm), indicating how many items each user
tagged with which tag.

IT matrix: IT(il, tm) =
∑k=K

k=1 D(uk, il, tm), indicating how many users tagged each
item with which tag.

UI matrix: UI(uk, il) =
∑m=M

m=1 D(uk, il, tm), indicating how many tags each user
assigned to each item.

In this representation the UI matrix does not contain a clear indication of the users’
preference towards the available content. Therefore, we replace the tag based User-
Item matrix by the matrix based on the users’ ratings. The rating matrix (R(uk, il))
contains the explicit users’ preference for the available content, often expressed on a
five or ten point scale.

Using the nonzero matrix values as edges, these three matrices (UT, IT and R)
constitute a tripartite graph with users, items and tags as nodes. We include self-
transitions that allow the walk to stay in place, which increases the influence of the
initial state. The self transitions are represented by an identity matrix SU = IK , so
that the weight of the self transitions is equal for all nodes.

To reduce the influence of frequently occurring elements, we use TF-IDF weighing
on the input matrices [110]. For example, the weighted User-Tag matrix is computed
by:

UTTF-IDF(uk, tm) = UT(uk, tm) ∗ log

(
K∑k=K

k=1 sgn(UT(uk, tm))

)
(5.2)

where the sign function (sgn) sets all values > 0 to 1. Before combining the matrices
we normalize them so that all rows sum to one.

We combine UT, IT and R in the transition matrix A, as shown in Figure 5.1.
For each relation we create an undirected edge by putting UT, IT and R in the
upper diagonal of A and the transposed matrices in the lower diagonal. Due to the
normalization of the submatrices, the rows of A now sum to 1, so they can be used
as transition probabilities.

In this model α ∈ [0, 1] is the weight of the self transitions. This parameter is
strongly related to the optimal length of the random walk, we can therefore fix α

and optimize only the walk length. Earlier work has shown that the optimal retrieval
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performance is not strongly dependent on the choice of self transition probability [26;
29]. A slower walk does give a higher resolution to pick the optimal walk length, we
therefore fix the self-transition probability (α) to a relatively high value of 0.8.

In the initial state vector (v0), the starting points of the walk are assigned accord-
ing to the target user and the query terms. The state probabilities after n steps are
computed by repeating the multiplication of the state vector and the transition ma-
trix A. After n steps, the content ranking is obtained by ordering the part of vn that
corresponds to content (vn(K + 1, . . . , K + L)) according to the state probabilities.
This ranking will also contain the training data (i.e. the items already rated by the
target user). We assume that a different user interface is used to browse previously
seen content (the user’s library), therefore we remove the training examples from the
final ranking.

5.2.2 Query Weight (θ)

Most tag-based retrieval systems use the selected tag as query term and rank the
content according to popularity or freshness. In the proposed model the query tag
can be enriched by integrating the users history in the search. In the initial state
vector, both the query tag and the target user are assigned a value according to θ

(θ ∈ [0, 1]): v0(uk) = θ and v0(tm) = 1 − θ (where uk is the target user and tm
indicates the set of selected query tags: m = {m1, . . . , mq̂}). The weight of 1 − θ will
be divided over the number of tags that are selected as query (q̂). When θ is set to 0,
the state probabilities only depend on the selected query tags, so the result will not
be personalized for uk. When θ = 1 the state probabilities depend only on the profile
of the target user, so the predicted content ranking will not be relevant to the query,
which closely resembles collaborative filtering [106].

5.3 Data

5.3.1 LibraryThing

LibraryThing4 is an on-line web service that allows users to create a catalog of the
books they own or have read. A user can tag and rate all the books he adds to his
personal library. The social aspects of this network give the user the opportunity to
meet like-minded people and find new books that match his preference. The popu-
larity of the system has resulted in a database that contains almost 4 million unique
works, collaboratively added by more than 500,000 users. We are not aware of any
other open network where both collaborative tagging (≈ 40 million) and rating (≈ 5
million) are actively used by the community.

We have collected a trace from the LibraryThing network, containing 25,295 ac-
tively tagging users5. After pruning this data set we retain 7279 users that have all
supplied both ratings and tags to at least 20 books. We remove books and tags that
occur in fewer than 5 user profiles, resulting in 37,232 unique works and 10,559
unique tags. This pruned data set contains 2,056,487 UIT relations, resulting in a

4http://www.librarything.com
5Crawled in July 2007
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density of 7.2 ∗ 10−7 (fraction of non empty cells in D). The derived R, UT and IT
matrices have a density of respectively: 2.8 · 10−3, 5.2 · 10−3 and 2.0 · 10−3.

Figure 5.2 shows all annotations sorted by the number of assigned tags (q). In
most related literature this relation is modeled by a power-law distribution [49; 119].
Although word frequencies in full documents indeed follow a power-law [93], the
distribution of tag assignments seems to deviate from a true power-law for the lower
values (q < 5). It was proposed by Arampatzis and Kamps to model the distribution of
query length in web search by a combination of a Poisson and power-law model [3].
We find that their findings strongly correspond to the annotation length distribution
in LibraryThing if we use the Poisson distribution for q ≤ 5 and a power-law fit for
q > 5:

PQ(q) =

{
λqe−λ

q! if q ≤ 5
Cq−s if q > 5

(5.3)

We find the optimal fit with parameters λ = 2.3 for the Poisson distribution and
C = 83, s = 4.4 for the Power-law.

Arampatzis and Kamps compared various TREC and AOL data sets and found
that the average exponent is close to 5 for web query length [3]. In full textual
documents the exponent of word frequencies is generally known to be lower, for
example Newman found a value of 2.2 for English text in the book Moby Dick [93].
The slope of the Power-law fit on the LibraryThing tagging data (Exponent: 4.4) lies
between the distributions observed in web queries and in full English documents.
This shows that the annotations that people make in social tagging systems are more
exhaustive than queries but more focused than full documents.

In our experiments we will assume that people would use a subset of the terms
they have used to annotate their content if they needed to retrieve this content. Here
we make the common assumption that the query and document are derived from the
same language model. We obtain the query tags by randomly selecting q̂ terms from
the set of tags that were originally assigned by the user (q̂ ≤ q). When increasing the
number of query tags we keep the previously selected set and enrich the query with
an extra randomly selected tag. As in any text based retrieval system, we assume that
we can only answer queries with terms that occur in the corpus.

To study the effect of personalization on the retrieval performance for increasing
number of query tags (q̂ ∈ 0, . . . , 4), we want to use the same validation set for each
value of q̂. Therefore only the annotations (tags assigned by a single user on a single
item) that consist of 4 or more tags can be used for evaluation. Figure 5.3 shows
the number of annotations that qualify for our analysis per user, sorted in descending
order. Based on the extensive study of Mislove et al. on the effect of crawling methods
on the collected data, we expect that this distribution lacks a power-law tail because
our data crawl was biased towards users with many annotations [88].
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Figure 5.3: Users sorted by number of
books they annotated with q ≥ 4. 1844
users never applied 4 or more tags on a
single book.

5.4 Experimental Setup

5.4.1 Data Preparation

In order to estimate the performance of our model without overfitting to the data, we
split the data in two equal parts (see Figure 5.4). Together with all the created anno-
tations (ratings and tags), half of the users (3640 profiles) are put into the training
set and the other half constitute the test set (Step 1). We now use the training set to
optimize the model parameters by holding out 1/5 of the items of 1/5 of the training
users (the validation set).

We use our model to predict the held-out content (Step 2) using the tags assigned
by the target user as query for the content he applied the tags on. From the user’s
validation set we select 4 random tags that were used together on at least one item.
We use q̂ of these tags as a query and compute the NDCG measure (discussed in the
next section) over the items that were tagged by this user with these tags. We repeat
this selection until every item that was given at least 4 tags by this user has been
evaluated at least once.

We compute the mean score over all validation users in the training set and to
obtain stable results we repeat the optimization for all 5 independent user splits. We
compare the obtained mean performance for different settings of n and θ to find the
optimal model for personalized search (Step 3, Figure 5.5). There are 1844 users who
have never used 4 or more tags to annotate a book (Not visible in Figure 5.3 because
of the logaritmic scale). These users will therefore not be part of our evaluation set,
but will be present in the graph.

The optimal model parameters derived from the training set are used to compute
the performance on the test set, by holding again 1/5 of the user profiles of 1/5 of the
users out, and computing the NDCG (Step 4). Finally we compare the results of our
optimal model to the results achieved with conventional methods (Step 5, Figure 5.7).
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Figure 5.4: Step 1: Splitting of the D matrix, the R matrix is split accordingly. Step 2,4:
A slice of the matrix contains a single user’s items and tags. Step 3,5: The tags used by
that user are used to predict the held-out content.

5.4.2 NDCG Evaluation

To evaluate the predicted content ranking, we use the Normalized Discounted Cumu-
lative Gain (NDCG) proposed by Järvelin and Kekäläinen [62].

In the predicted content ranking, the rank positions of the held-out validation
ratings that correspond to a positive opinion r ∈ {3, 3.5, 4, 4.5, 5} are assigned a value
of respectively G ∈ {1, 2, 3, 4, 5}, called the gain.

In order to progressively reduce the gain of lower ranked test items, each position
in the gain vector is discounted by the log2 of its index (where we first add 1 to the
index, to ensure discounting for all rank positions > 0). The Discounted Cumulative
Gain (DCG) now accumulates the values of the discounted gain vector:

DCG[i] = DCG[i − 1] + G[i]/ log2(i + 1) (5.4)

The DCG vector is normalized to the optimal DCG vector. This optimal DCG is com-
puted using a gain vector where all test ratings are placed in the top of the ranking
in descending order. Component by component division now gives us the NDCG vec-
tor in which each position contains a value in the range [0, 1] indicating the level of
perfectness of the ranking so far. We use the area below the NDCG curve as score to
evaluate our rank prediction.

5.5 Experiments

We will use the proposed random walk model to discuss the retrieval performance
for increasing query length. For each number of tags (q̂ ∈ 0, . . . , 4) we will compare
the optimal ranking of our random walk model to a frequency based ranking. This
frequency ranking is obtained by taking one step through the graph with θ = 0. In
this case the ranking will only be based on the number of people who have assigned
the query tag(s) to the content. Due to the TF-IDF weighting on the ITT matrix this
ranking corresponds to using a simple vector space model with TF-IDF weighting.
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query independent optimal ranking. Note that the NDCG at n = 1 and θ = 0 is equal to a
random ranking, because a user has no direct link to potentially interesting content.

5.5.1 Smoothing and Personalization

To find the optimal model parameters and evaluate the sensitivity of the model we use
the random walk to predict the left-out content of the training part of the LibraryThing
data. We will first use only one tag (q̂ = 1) and the target user as query. Figure 5.5
shows the effect of the personalization (θ) at different walk lengths. The optimal
NDCG is found at θ = 0.6, which means that personalized retrieval gives a more
accurate prediction than both completely personal and completely tag based queries
(Figure 5.5, point B).

We also find that the optimal number of steps is larger than one (n = 13), which
means that the random walk improves a content ranking based on direct relations.
Content that has not been tagged extensively will often miss the terms used as a
query by other people. The random walk smoothly integrates these latent relations
that are not explicitly present in the data. When the number of steps further increases
(n → ∞) the state vector will converge to the stable distribution based on the global
network popularity of the content. As expected the mean NDCG drops to a lower
value if the content ranking forgets the information about the initial query.

If θ = 1 the content ranking will be completely based on the user’s preference.
This setting therefore represents the optimized model for q̂ = 0 (Figure 5.5, point
D). When n → ∞ the state vector will converge and the content ranking will be
independent on the initial query (and θ). We therefore use the popularity ranking
based on the finite state vector as frequency ranking with q̂ = 0 (Figure 5.5, point C).
The difference in NDCG between n = 99 and n = 101 is 5.1 · 10−5 which is smaller
than the reported significance, therefore we use the result at n = 101 as finite state
vector.

We repeat the optimization for increasing number of query tags and show the
optimal model parameters in Figure 5.6. If we add more tags to the query we see that
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the optimal parameter settings converge to the frequency based ranking (θ = 0 and
n = 1). If a user puts more effort in indicating his information need by giving more
query terms to the system the influence of personalization and smoothing diminishes.

5.5.2 The Influence of Personalization and Smoothing

To evaluate our model performance without overfitting to the data, we use a separate
test set as discussed in Section 5.4.1. For each number of query terms we will com-
pare the NDCG with optimal model parameters to the NDCG obtained with frequency
ranking. The mean NDCG and standard deviation (σ) are shown in Table 5.1 and
visually depicted in Figure 5.7.

These results show that the optimal model indeed converges to the frequency
based model when the user issues longer queries. When the query consists of 4 tags
there is an insignificant performance difference between both models. When the
query consists of 4 tags only the user itself can make his information need more
specific by selecting more tags.

We map the result of the optimal model to the interpolated NDCG obtained with
frequency ranking. In this way we can express the performance difference in a number
of hypothetical query terms (Δq̂). We find that optimized content recommendation
(q̂ = 0) gives the same performance as a frequency ranking based on 0.56 tags. This
indicates that the accuracy of recommendations is closer to a ranking based on a user
selected query term than to the popularity ranking.

If a user selects a tag from a tag-cloud (q̂ = 1), a system that uses both person-
alization and smoothing can give the same performance as a frequency based system
with 1.53 query terms. If the user decides to put more effort in his search by clicking
more terms or typing a longer query the gain of the personalized model disappears.
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Table 5.1: Test results for optimal and frequency ranking. For comparison, a random
ranking gives an NDCG of 0.048

Frequency Optimal

q̂ θ n NDCG σ θ n NDCG σ Δq̂

0 0 101 0.104 4.5 · 10−3 1 17 0.155 1.2 · 10−2 0.56
1 0 1 0.195 7.8 · 10−3 0.6 13 0.232 1.1 · 10−2 0.53
2 0 1 0.265 9.7 · 10−3 0.5 11 0.280 1.1 · 10−2 0.32
3 0 1 0.311 7.6 · 10−3 0.4 9 0.318 7.9 · 10−3 0.18
4 0 1 0.348 6.0 · 10−3 0.2 5 0.350 6.0 · 10−3 n/a

5.6 Discussion

5.6.1 Related Work

Research on query length in web search has shown that users generally do not like to
type exhaustive queries. The reported average query lengths range from 2 to 4 terms,
while less than 4% of the queries consist of 6 terms or more [61; 3]. Belkin et al.
showed that longer queries however result in higher user satisfaction and compared
various interfaces to elicitate users to type longer sentences [9]. This work advocates
that personalization provides another way to disambiguate the multiple meanings
encoded by (too) short queries.

Personalized web-retrieval systems are usually divided into three categories re-
ranking, filtering and query expansion [68]. Re-ranking and filtering methods first
need to get a list of documents that contains at least the relevant set. Most of the pro-
posed methods take the results from existing search engines and adapt the obtained
document set to the user’s preference [94; 120]. Collaboratively annotated social
media are however characterized by sparse data descriptions. The initially retrieved
list with documents that match the query terms might therefore be too short to allow
re-ranking or filtering. The graph ranking method we have used exploits the network
structure which is inherently present in social media. Therefore it allows content to
be ranked, even if it does not contain the initial query terms.

Personalized retrieval systems need information about the user’s preference. This
user profile can either be explicitly or implicitly created. In web-retrieval, explicit
profile creation is unpopular because it usually means that users have to spend extra
time to fill in long forms with personal information [68]. In social media, tagging and
rating profiles are explicitly created but not only serve the purpose of personalization.
People naturally see the importance of tagging and often enjoy giving their opinion
by supplying a rating. In this work we have represented the preference of the user
by his explicitly created tags and ratings. We have shown that personalization based
on query expansion with a users previous annotations can on average improve short
queries by half a query term.

Furnas et al. observed that people use a surprisingly great variety of words when
they refer to the same thing. In a large user study they found that the probability
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model. b) Homographs like Java can be disambiguated using the target user’s history.

that two users favored the same term was < 0.20, resulting in big failure rates of IR
systems. Begelman et al. acknowledged this vocabulary problem in the social tagging
context and used clustering methods to group tags with strong semantic relations
to enable effective content access [8]. In previous work we have used the random
walk model to evaluate various retrieval tasks in differently designed tagging systems.
We have shown that the positive effect of the random walk on the reduction of the
vocabulary problem becomes larger in sparser graphs [26]. Here we have shown
that the effect of the random walk model is strongly dependent on the length of the
query. Especially the commonly short queries can benefit from the integration of
latent relations.

5.6.2 Synonym and Homograph Robustness

Well known problems in tagging systems are synonyms and homographs. Synonyms
are different words that share the same or closely related meaning. The problem
in tagging systems arises, because there is no clear regulation on which words to
use. If a piece of content has been tagged with a certain word and someone with a
different background uses its synonym as a query, the content might not be found. The
same problems arise when people use abbreviations, singular or plural words, word
combinations and different languages. If a tag cloud is used to query a database, only
a single word is used as initial query resulting in sub-optimal retrieval performance.
A user has to click multiple tags if he needs to disambiguate his initial query.

Clustering methods have been proposed to group tags with strong lexical rela-
tions [8]. Clustering algorithms create binary relations between concepts although
the natural similarity between words is a continuous relation. A random walk has
shown to have a soft clustering effect that smoothly relates similar concepts before
converging to the background probability [127]. Figure 5.8a shows that if enough
users have tagged certain content, a large number of paths will exist between syn-
onyms or otherwise semantically related terms. The soft clustering effect will group
these strongly connected entities which makes the random walk robust against syn-
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onymity problems.
Homographs are words that do not necessarily have the same pronunciation, but

are written in exactly the same way. If a browsing user selects a homograph as query,
the system will not know which denotation the user aimed for. In order to disam-
biguate the terms a user is looking for, our personalized random walk model inte-
grates the information about the past behavior of that user. By starting the random
walk at both the query tag and the target user, the content that matches the target
user’s preference is more likely to be found first (see Figure 5.8b.). Integrating the
user in the query can therefore reduce the number of clicks a user has to do to reach
the desired content.

5.7 Conclusions

The number of tags per annotation in social media closely resembles the number of
terms people use in web-queries. We expect that the same generative process forms
the basis of both events. We have therefore used the tags assigned by the users as
their hypothetical queries to retrieve this content.

Retrieval models in social content systems can greatly benefit from personalization
and smoothing. Due to the vocabulary differences between the network users a simple
vector space model will not find all the content related to a short tag-based query. In
social media, people explicitly create their preference profiles by annotating their
content. The graphical structure that arises in these systems can effectively be used
to give recommendations or rank the content according to the users’ queries.

We have shown that there is a clear relation between the length of the query and
the quality of the predicted content ranking. For queries shorter than 4 terms the
proposed model can significantly improve the content ranking. When a user decides
to put more effort in his query the positive effect of personalization and smoothing
diminishes.
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6
Finding Wormholes with Flickr Geotags

We propose a kernel convolution method to predict similar locations (worm-
holes) based on human travel behaviour. A scaling parameter can be used to
define a set of relevant users to the target location and we show how the geo-
tags of these users can effectively be aggregated to predict a ranking of similar
locations. We evaluate results on world and city level using independent test
sets collected from Wikipedia and GeoNames.

This chapter is an extended version of: Maarten Clements, Pavel Serdyukov, Arjen P. de Vries,
and Marcel J. T. Reinders. Finding Wormholes with Flickr Geotags. In Cathal Gurrin et al.,
editors, ECIR 2010, LNCS 5993, pages 658-661. Springer-Verlag, Berlin, Heidelberg, 2010.



102 | Chapter 6

6.1 Introduction

Many visitors of travel websites like www.expedia.com have not decided on a location
for their holiday at the moment they enter the website. To actively assist indecisive
users, these websites show cheap travel deals. Knowledge about travel locations sim-
ilar to the queries of the user can boost the sales by showing targeted advertisements.

We define wormholes as similar, but not necessarily spatially close locations on the
planet. We hypothesize that users have a specific travel preference and therefore visit
locations that are to some extend similar. Furthermore, making a photo at a visited
location is an indication that the user likes that location. Based on these hypotheses,
the aggregated travel data of many users should be able to reveal which locations are
most similar to a given query location. In photo sharing websites like Flickr1, users
can indicate the geographical location of their pictures by placing them on a world
map. We propose a method, similar to neighborhood based collaborative filtering, to
combine the users’ geotags in a prediction for similar locations.

The exploitation of geotags has shown to be effective with for various tasks. A
method for global event detection has been proposed by Rattenbury et al. [104]. Ah-
ern et al. made a mapping of popular tags to geographical locations [1]. This work
was extended by Kennedy et al., who select relevant pictures for the predicted clus-
ters [69]. Crandall et al. suggested not to use a fixed number of clusters and proposed
a mean shift algorithm to find the most prominent landmarks and representative pho-
tos [28].

Another application of Flickr’s geotags was proposed by Lee et al. who used the
geographic clusters related to a tag to improve the prediction of similar tags [74].
Furthermore, several methods have been proposed to predict the geotags of a photo,
based on its textual tags [117], visual information [28] and individual user travel
patterns [66].

As far as we know we propose a first attempt to predict similar locations based on
geotags alone. Textual tagging will always require manual effort and cameras with
GPS functionality will become mainstream in the coming years. Therefore we believe
that future data collections will contain more geotag data than manual annotations,
and data analysis will rely more strongly on geotags. The contributions of this work
can be summarized as follows:

1. We propose a weighing scheme to estimate the relevancy of a user to a given
location at various scales.

2. We compare several methods to aggregate user information in a way that accu-
rately predicts similar locations.

3. We propose an evaluation technique for similar location prediction, based on an
independent test set.

1http://www.flickr.com
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Figure 6.1: A 2D histogram of the data clearly shows the most developed areas in the
world. The zoom on Europe shows that the geotags of all users make an accurate map
which clearly shows the big cities and coast lines.

6.2 Flickr Geotag Data

Using the public API of Flickr we have collected the top-100 most popular localities
(cities, parks, etc.) for each day in 2008. The aggregated data contains 8,643 places
including the number of photos geotagged in 2008 by all Flickr users. To retrieve the
geotagged data, we now repeatedly follow the following procedure:

1. Select a location l from the full distribution, with the probability relative to the
global popularity in 2008.

2. Get a photo il from this location.

3. Get all the photos from the user who made il.

Following this strategy, we have collected the geotags of 36,264 users. Together these
users have uploaded 52,425,279 photos of which 22,710,496 have been geotagged.
This set contains over 20% of all public geotags available in Flickr in October 20092.
The histogram of all users’ geotags gives an accurate representation of the most de-
veloped areas in the world (Figure 6.1). Looking at the distibution of the number of
photos and annotations per user (Figure 6.2) we see that many users have a large
number of geotags. Based on related work on social annotation data we expect that
the true data distribution will follow a power-law [93; 119]. The proposed crawling
strategy is clearly biased towards active users. For the experiments proposed in this
work the long tale of the geotag data can be ignored, since we need users that have
shown interest in several distinct locations.

6.3 Wormhole Detection

From a given target location L we want to find the most similar locations around
the world. For each user u, a weight WL,u is computed based on the distance of

2According to: http://www.flickr.com/map
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Figure 6.2: The distribution of number of photos, geotags, unique geotags and unique
geotags when rounded to a 1000th degree (max. 111 meter) per user. The large gap
between these distributions shows that the data is strongly clustered. This is expected
as people make many pictures around famous landmarks. The relatively small difference
between the number of photos and geotags shows that the proposed crawling strategy
has a strong bias for users who geotag their photos.

the nearest geotagged photo of the user to the target location, weighted by a normal
distribution (to decrease the influence users that have never been close to the target):

WL,u = exp
(
−mini(d(L, Gu,i))2

σ2

)
, (6.1)

where standard deviation σ is used as a scaling parameter and d(L, Gu,i) computes the
euclidean distance between the ith geotag of a user Gu,i and L. The scale parameter
σ can be compared to the number of users selected in neighbourhood based collab-
orative filtering algorithms [12], as it determines which users are similar enough to
contribute to the prediction. The estimation of the relevancy of a user to a given loca-
tion might be improved by using the time that a user spent at a certain location [101].

The wormholes from L are now derived by creating a 2000x4000 histogram HL

of all users’ geotags, using WL,u as weight per user. For each geotag in the collection
we add the weight of the corresponding user to the respective bin. The choice of grid
size results in cells that are at most 10x10km (around the equator). The longitudinal
size of the cells reduces to 5km around mid Canada and south of Chile.

Using a grid is prone to errors when locations close to one of the cell boundaries
are considered. To transfer the weight of a single grid cell to the neighbour cells,
we perform a kernel convolution of the histogram with a Gaussian kernel (with the
same σ as used in Equation 6.1). The difference between the resulting profile and
a distribution based on all users (WL,u = 1 for all u and convolution with same σ)
gives a score that indicates the relevance of each position on earth with respect to the
target location L.

We evaluate this method for increasing values of σ and 3 different aggregation
methods:
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Figure 6.3: a) Prediction of mountains based on the 5 major summits (σ in km). b)
Prediction of beaches based on Platja de Lloret de Mar (σ in km). c) Wormholes in Paris
from Père Lachaise (σ = 60m, Method: N3).

N1. Add all the user’s geotags with WL,u to the histogram:

HL(bin) =
∑
∀u

∑
∀Gu,i∈bin

WL,u. (6.2)

N2. Normalize per user by dividing the computed weight by the number of geo-
tagged photos of each user (|Iu|):

HL(bin) =
∑
∀u

∑
∀Gu,i∈bin

WL,u/|Iu|. (6.3)

N3. Limit the contribution of each user to only one photo per histogram bin:

HL(bin) =
∑
∀u

∑
∀Gu,i∈bin

WL,u/|Gu,n ∈ bin|. (6.4)

6.4 Results for some Mountains, a Beach and a Cemetery
To evaluate our wormhole prediction method, we collect 156 test mountains from
Wikipedia3.We use the list of 5 summits (highest mountains per continent, excluding
Antarctica and Oceania) as starting locations4. We now evaluate the result by taking
the top ranked grid cell and count it as positive if one of the test mountains is found
within a radius of 3 cells around that cell. For mountain prediction this can be moti-
vated because many people do not visit the actual summit, but hike around the slope,
which can extend for several tens of kilometers. Figure 6.3a shows the mean average
precision over the top-50 predicted peaks based on the five summits for increasing σ.

3http://en.wikipedia.org/wiki/List of peaks by prominence
4http://en.wikipedia.org/wiki/List of mountains
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Figure 6.4: Predicted locations when Mnt. Everest is used as query. Blue: Positive pre-
dictions, Red: Negative predictions.

The optimal performance is reached with normalization per grid cell and a kernel σ

of 20km.
As an example of the method performance, Figure 6.4 shows the recommended

locations when Mnt. Everest is used as starting point. For visualisation purposes σ

is set to 50km, a larger value than the optimum found in Figure 6.3a. Clearly the
most populated areas like Europe and both coastlines of North America are unrec-
ommended for mountaineers. Some mountain ranges are however clearly visible as
positive recommendation: Rocky Mountains, The Andes, Scottish Highlands, Mount
Kilimanjaro and of course the region around the query, the Himalaya range.

Next, we evaluate the prediction of beaches by finding the wormholes from Platja
de Lloret de Mar, just north of Barcelona. We collect a list of 7216 beaches from
Geonames5 to evaluate the predicted locations. The results on beach prediction (Fig-
ure 6.3b) correspond to the results found on mountain prediction, N3 gives the opti-
mal normalization and the optimal kernel width is around 20km.

Finally, we show that this method can be applied at multiple scales by predicting
the wormholes from the famous cemetery Père Lachaise in Paris. Figure 6.3c shows
the top-10 predicted locations. The highest ranked location not located close to L

is found at Cimetière du Montparnasse, another big cemetery in Paris, demonstrating
that this method can find similar locations also at city scale.

6.5 Conclusions
We have shown that geotags can effectively be used to predict similar locations with
high precision. To limit the influence of individuals on the prediction only one geotag
per grid cell should be considered per user. The kernel convolution method allows for
detection of similar places at different scales, and can therefore be used for recom-
mendations at global or city level.

5http://www.geonames.org/
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Using Flickr Geotags to Predict User Travel

Behaviour

We propose a method to predict a user’s favourite locations in a city, based on
his Flickr geotags in other cities. We define a similarity between the geotag
distributions of two users based on a Gaussian kernel convolution. The geotags
of the most similar users are then combined to rerank the popular locations
in the target city personalised for this user.
We show that this method can give personalised travel recommendations for
users with a clear preference for a specific type of landmark.

This chapter is published as: Maarten Clements, Pavel Serdyukov, Arjen P. de Vries, and Marcel
J. T. Reinders. Using Flickr Geotags to Predict User Travel Behaviour. In SIGIR10: Proceed-
ings of the 33th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 851-852, New York, NY, USA, 2010. ACM.
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7.1 Personalised Travel Guides

Before visiting a city, many people consult a travel guide or website that lists the most
interesting locations. These travel guides are commonly based on the opinions of all
other users. However, people have different preferences and therefore are not equally
satisfied by these popularity rankings.

We propose to predict a user’s favourite locations in a city based on his travel be-
haviour in previously visited cities. On social photo sharing websites like Flickr1 peo-
ple can annotate their photos, including the geographical location where the photo
was made. Also, increasingly more cameras and smartphones are automatically stor-
ing the GPS coordinates when a photo is made. These geotags give an accurate indica-
tion of the user’s preferred landmarks. Based on a set of collected geotags, we define a
measure to identify similar users in previously visited cities. Then we aggregate these
users’ opinions in a different city to obtain a personalized travel recommendation for
the target user.

The exploitation of geotags has shown to be effective for various tasks, like global
event detection [104] and mapping textual tags to geographical locations [28]. Based
on users’ GPS tracks, location recommenders have been proposed that attempt to
predict popular places and activities near the current location of the user [144; 128].

In this work we predict relevant locations based on users’ geotags in a geographi-
cally remote location. We show statistical improvements over all users that visited the
10 largest cities and give an effective recommendation example based on an artificial
user profile.

7.2 Flickr Geotags

Using the public Flickr API we have collected the geotags of 36,264 users, who actively
use the geotag functionality. Together these users have uploaded 52,425,279 photos
of which 22,710,496 have been geotagged.

We keep the data points that lie within the bounding boxes of the ten most visited
cities. Based on our data, these cities in order of visitors are: London, New York, Paris,
San Fransisco, Los Angeles, Rome, Chicago, Washington, Barcelona, Berlin. We only
keep users who have made at least 5 photos in at least two cities. After this constraint
the number of geotags of a single user in a city ranges from 5 to 5073 photos, and in
total the 4750 remaining users have made 12,669 city visits. Together the users made
526,827 photos on the qualifying trips.

7.3 Methodology & Results

7.3.1 Baseline Ranking

As a baseline prediction we create a scale space representation of all the geotags
in each city using a mean shift algorithm, similar to Crandall et al. [28], but using
a Gaussian kernel instead of a uniform disc: K(z) = e−z2/2σ2

, where the standard

1http://www.flickr.com
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Figure 7.1: Mean MAP@50 of the baseline prediction in the top-10 cities for several posi-
tive cutoff values (PC) and increasing values of the kernel size (σ).

deviation σ is used as a scaling parameter. This method finds the maximum values of
a kernel convolution of the distribution of all users’ geotags with a Gaussian kernel
(ΦAll). To ensure we reach all local maxima, we initiate the mean shift algorithm
with all individual geotags. For each subsequent scale we use the peaks found in
the previous scale to initiate the optimalisation procedure. The ranking based on the
resulting peak weights gives us the top landmarks for each city, based on the general
popularity.

To evaluate the ranking we judge a recommended location lj as correct if the
target user ut has a geotag i within the positive cutoff value (PC) of that location,
∃i : |lj − ut(i)| < PC. Figure 7.1 gives the mean MAP@50 over the 10 cities, which
computes the mean over the precision after each correct prediction in the top-50.

Figure 7.1 shows that the optimal σ is strongly dependent on the choice of PC.
The predictions in this chapter will be evaluated at PC = 100 meter, which is roughly
the radius of a landmark (e.g. the Colosseum is 189 m long). Based on the baseline
results at PC = 100 we select σ = 68 m for all further experiments.

7.3.2 Personalised Reranking

To personalise the landmark ranking for ut in the target city (Ct), we compute the
similarity between ut and all other users uc in the similarity city (Cs), where Ct and Cs

are any two cities from the top-10, both visited by ut. Using the mean shift algorithm
we compute the peaks of ut at σ = 68m in Cs. For each peak k of ut we now compute
the value of the kernel convolution (Φuc(k)) on the geotags of uc in Cs. The similarity
between the two users is now derived by computing the sum over the minimum value
in the two resulting profiles S(ut, uc) =

∑
k min(Φut(k), Φuc(k)). As both profiles are

normalised, this will give a similarity score in the range 0-1.
Based on all similar users we now rerank the top-50 popular locations lj , pre-

dicted by the baseline method in Ct. This is done by recomputing the kernel con-
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Figure 7.2: MAP@50 and NDCG@50 for increasing personalisation weight θ.

volution at these locations while weighing each user’s geotags with his similarity
to the target user: ΦSim(lj) =

∑
uc

S(ut, uc)Φuc(lj). The top-50 locations are now
reranked by a linear combination of the baseline and the personalised score: R(lj) =
(1 − θ)ΦAll(lj) + θΦSim(lj).

Figure 7.2 gives the mean results over all users in the 90 possible combinations of
two cities. The baseline is represented by the score at θ = 0, where all user similarities
are set to 1. Compared to the baseline, the optimal result on MAP improves 0.3%.
At θ = 0.2 there are 10,081 trips where we present an improved ranking to the user,
against 8,440 trips where the baseline ranking would have been better. We also show
the NDCG (refer to [62] for details) where the gain of each correct prediction is
assigned as the inverse popularity of that location (1/ΦAll(lj)). The increase in NDCG
shows that our recommender suggests less popular and therefore more serendipitous
locations.

The improvement on MAP@50 is statistically significant in 22 out of 90 city pairs
(based on a paired t-test with p < 0.05). For most users the improvement will however
not make a big practical difference in the recommended locations. Compared to
traditional collaborative filtering data sets, we find that many more people conform
to the global popularity ranking if landmarks are concerned. For example, almost all
people who visit Paris will make a photo of the Eiffel tower, while people who do not
like Sci-Fi movies will never watch Star Wars even though it is one of the most highly
ranked movies all times. This makes improving over the baseline a challenging task.
Also, we observe many mixed preferences in user profiles (e.g. there are no users who
only make photos at zoos), this makes it hard to match similar users.

As an example of the potential benefit of personalized travel recommendations,
we created an artificial user profile with 10 geotags scattered around two mod-
ern/contemporary art landmarks in Barcelona (MACBA and Miro foundation). Ta-
ble 7.1 shows a completely personalised ranking (with θ = 1) and the rank difference
between the baseline and the personalised ranking for modern art museums in other
cities. It is clear that in all other cities where a modern art museum was in the top-50
we obtain a big rank improvement between the baseline and the predicted ranking.
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Table 7.1: Query: MACBA + Miro

City Rank ΔRank Landmark name

London 1 +3 Tate Modern
NY 1 +10 Guggenheim Museum
NY 3 +5 Museum of modern art
Paris 3 +4 Centre Pompidou
SF 3 +7 SF Museum of Modern Art
Chicago 2 +29 Museum of Contemporary Art
Washington 1 +20 Hirshhorn Museum
Berlin 7 +40 Hamburger Bahnhof Museum
Berlin 14 +16 Neue Nationalgalerie

7.4 Conclusions

A user’s favourite landmarks in a previously unvisited city can be predicted by rerank-
ing the most popular locations based on users with similar travel preference. Our
results indicate that statistical improvement over all users is hard to achieve, but for
users with a clear travel preference very accurate predictions can be made.
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8
Personalised Travel Recommendation based on

Location Co-occurrence

We propose a new task of recommending touristic locations based on a user’s
visiting history in a geographically remote region. This can be used to plan
a touristic visit to a new city or country, or by travel agencies to provide
personalised travel deals to its customers.
A set of geotags is used to compute a location similarity model between two
different regions. The similarity between two landmarks is derived from the
number of users that have visited both places, using a Gaussian density esti-
mation of the co-occurrence space of location visits to cluster related geotags.
The standard deviation of the kernel can be used as a scale parameter that
determines the size of the recommended landmarks.
A personalised recommendation based on the location similarity model is eval-
uated on city and country scale and is able to outperform a location ranking
based on popularity. Especially when a tourist filter based on visit duration is
enforced, the prediction can be accurately adapted to the preference of the user.
An extensive evaluation based on manual annotations shows that more strict
ranking methods like cosine similarity and a proposed RankDiff algorithm
provide more serendipitous recommendations and are able to link similar lo-
cations on opposite sides of the world.

This chapter has been submitted as: Maarten Clements, Pavel Serdyukov, Arjen P. de Vries, and
Marcel J. T. Reinders. Personalised Travel Recommendation based on Location Co-occurrence
ACM Transactions on Information Systems. 2010.
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8.1 Travel Recommendation

Location based services are quickly gaining popularity due to affordable mobile de-
vices and ubiquitous Internet access. Websites like Foursquare1, Gowalla2, Google
Latitude3 and Facebook4 show that people want to share their location information
and get accurate location recommendations at any time and and place. In return for
sharing their location data, users can now be matched to products, venues, events or
local social relations and groups.

Accurate predictions of the user’s preferred locations can simultaneously aid the
user itself, advertisers of products specific to the recommended place and service
providers (e.g. transportation to the recommended location). To provide these recom-
mendations, the system needs to have an accurate way to find similarities between
locations or people. We propose to exploit the past visiting behaviour of people to
build a location similarity model that can be used for personalised location predic-
tions.

In this work we will exploit a set of geotags collected from Flickr5 to make a rec-
ommender that can predict relevant locations for individual users. In Flickr, geotags
are tuples of latitude and longitude that represent the exact location where a user
made a photo. Registration of geotags can be done manually by placing the photo on
a map, or automatically by the device if it is equipped with a GPS module. Here we
show that the collective knowledge represented in these geotags can be used to esti-
mate similarities between locations and that personalised location recommendations
can be derived from this similarity model.

Given a user’s preference in one predefined area, we predict his activity in a an-
other disjoint area. The proposed method will be evaluated on both city and country
scale and will show that places on opposite sides of the world can be related based on
user location histories.

8.2 Related Work

Since GPS equipped mobile phones have become mainstream, the amount of avail-
able geotags has grown to a number that allows for intensive data analysis. In this
work, geotags are used to predict interesting locations for individual users, but the
exploitation of geotags has shown to be effective for various other tasks. A method
for global event detection has been proposed by Rattenbury et al., who searched for
the occurrence of textual tags in spatial and temporal bursts [104]. Ahern et al.
made a mapping of popular tags to geographical locations, resulting in a scale depen-
dent map overlay with semantic information on the underlying data [1]. This work
was extended by Kennedy et al. who selected relevant pictures for the predicted clus-
ters [69]. Crandall et al. suggested not to use a fixed number of clusters and proposed

1http://foursquare.com/
2http://gowalla.com/
3http://www.google.com/latitude
4http://www.facebook.com/
5http://flickr.com/
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a mean shift algorithm to find the most prominent landmarks and representative pho-
tos [28].

Another application of Flickr’s geotags was proposed by Lee et al. who used the
geographical clusters related to a tag to improve the prediction of similar tags [74].
Furthermore, several methods have been proposed to predict the geotags of a photo,
based on its textual tags [117], visual information [28] and individual user travel
patterns [66].

As geotags relate to a location where the user made a photo, they inherently
contain a touristic preference indication. Full GPS tracks are useful to study daily
mobility patterns but extra effort is needed to extract touristically interesting spots.
Based on users’ GPS tracks, location recommender systems have been proposed that
attempt to predict popular places and activities near the current location of the user.
Some work has focused on the recommendation of specific types of locations. An item-
based collaborative filtering method was used to recommend shops, similar to a user’s
previously visited shops [128] and a user-based collaborative filtering was proposed
to generate restaurant recommendations through users with similar taste [57]. Zheng
et al. extensively studied GPS tracks in Beijing, defined a method to extract interesting
locations from this data (Stay regions) and proposed a matrix factorization method to
suggest locations and activities based on the current state of the user [144]. They also
showed that the HITS model can effectively be used to create a ranking of popular
locations and experienced people [145].

Compared to most of the previously proposed methods, our system gives recom-
mendations in a geographically remote location, so people can use it when they are
planning a trip to another country or city. We have previously showed that geotags
can be used to construct a measure of similarity between locations [27]. Here, we
present a thorough extension of the previous work, using a similarity model based
on a scale-space of location co-occurrence data. We evaluate the potential of this
similarity model for personalised recommendations. The proposed model contains a
scale parameter that allows the prediction of differently sized regions. So, when a
user decides to visit a certain country the recommender can be used to find the most
interesting cities and when a user gets to that city the same method can be used to
find the most interesting landmarks, restaurants or other venues.

Many recommendation algorithms have been proposed based on similarities be-
tween objects in a discrete item-space [112; 133], which has proven to be effective in
E-commerce applications [79]. Compared to these systems, a location recommender
does not have a limited number of objects to recommend. Any point consisting of two
continuous values of latitude and longitude can be recommended. On a more fun-
damental level, we introduce a model that includes the pairwise distances between
points in order to reason in this continuous space. We will demonstrate the effective-
ness of this model on geographical data, but it could easily be extended to include
other continuous dimensions like temporal information.
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Figure 8.1: The distribution of the number of geotagged photos per user in descending
order. The accuracy filter reduces the data set from 43M to 26M geotags. By selecting
only unique geotags we maintain 7M points. The table also indicates the mean and median
number of geotags per user.

8.3 Data

8.3.1 Data Collection

Using the public API of Flickr we have collected a large set of geotagged photos in
a period of several months at the end of 2009 and early 2010. Figure 8.1 gives the
distribution of the number of geotags per user (All). The distribution clearly shows
that our crawl has a bias to people with many geotags, as the expected long tail of
the distribution is missing. However, as we will only evaluate recommendations for
users who have provided a sufficient amount of data, this bias in the crawl does not
interfere with the objectives of this work. The total set corresponds to roughly 46%
of the 93 million publicly available geotags in Flickr at the end of 20096.

Each geotag has an associated level of accuracy in the range of 1-16, 16 being the
most accurate. This accuracy roughly relates to the zoom level of the map interface in
Flickr. Because we want to make accurate predictions at the scale of individual land-
marks, we keep only geotags at accuracy 15 or 16 (street level). The remaining data
is represented by Acc 15-16 in Figure 8.1. The possibility to integrate the accuracy
value in the recommender system will be discussed in Section 8.8.

Flickr allows users to upload and annotate photos in batches. When someone uses
this function it can either mean that he made many photos at that location, or that he
did not take the effort to give the exact coordinates for each individual photo. Because
of the uncertainty about the user’s intent when uploading a batch to a single location,
we choose to ignore the possible relation between user preference and batch size and
store only one geotag per batch. After these filtering steps, we retain 7.2 million
geotags contributed by 125 thousand users (Unique in Figure 8.1).

8.3.2 Data Statistics

The collected data set gives an interesting insight in the common behaviour of Flickr
users. Besides the location of photos, Flickr also stores the date and time a photo
was taken (according to the internal camera clock). Figure 8.2 shows the number of

6According to: http://www.flickr.com/map
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Figure 8.2: When Flickr users make photos. Left: Photo count per week from 2003 to
2010. Right: Photo count per minute of the day, aggregated over all days.

photos taken in a certain week between 2003 and 2010. Apart from the clear increase
in popularity over the last 5 years it is interesting to see that most of the photos are
taken during the northern hemisphere summer.

When we aggregate over all days and count the number of photos for each minute,
we clearly see the bulk of photos is made late in the morning or early afternoon. In
the evening the number of photos slowly decays until the minimum is reached around
4:30. The spikes at full hours and at January 1st in the weekly histogram are caused
by default values of empty fields in Flickr’s database.

Figure 8.3 gives the geographical distribution of the data. This 2000x4000 his-
togram of the geotags clearly shows the most popular travel areas in the Flickr com-
munity. Europe and North America have the largest density of data points, but the
rest of the world is also recognisable. Figure 8.4 gives a closer view of North America,
which shows that coastlines, cities and even highways are clearly represented in the
data.

Based on this data, we select the 10 most popular countries and 10 most popular
cities to evaluate the feasibility of personalised travel recommendation. We rank the
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Figure 8.3: Where Flickr users make photos: World distribution.
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Figure 8.4: Where Flickr users make photos: USA distribution

Table 8.1: Number of users in top-10 cities and countries

Users City Users Country

19802 London, England, United Kingdom 45738 United States EAST
18291 New York, NY, United States 32904 United States WEST
13786 Paris, Ile-de-France, France 25934 United Kingdom
12470 San Francisco, California, United States 18247 France
7893 Rome, Lazio, Italy 16995 Italy
7627 Los Angeles, California, United States 15414 Spain
7208 Washington, District of Columbia, United States 13381 Germany
7158 Chicago, Illinois, United States 11024 Canada
7069 Barcelona, Catalonia, Spain 6503 Netherlands
6569 Berlin, BE, Germany 5067 Australia

cities and countries by the number of users that have been there (Table 8.1), based
on their geotags located within city bounding boxes7 and country polygons8. Because
the number of users in the USA is much larger than other countries, we split the USA
in 3 regions: East USA (Longitude > −98.583◦), West USA (Longitude < −98.583◦),
Alaska (Latitude > 50◦).

8.4 Experimental Setup

Figure 8.5 presents the experimental setup and the notation described in the following
sections is summarised in Table 8.2. The data is comprised of a set of users u ∈ U

who have all visited at least one location l ∈ L, where l is a tuple (x, y, z) of Cartesian
coordinates and L ⊂ R

3 is the set of all geotags in our data set. The set of geotags L
is a subset of the world W described by a sphere with radius 6,367,449 m centered at

7Collected in January 2010 from http://developer.yahoo.com/geo/geoplanet/
8Collected in March 2010 from http://mappinghacks.com/
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Table 8.2: Notation used in this chapter. For all l, L, f , Φ, p, P we use the superscript
. . .s/t to refer to the region of the data (Rs or Rt) and the subscript . . .uk

if the data is
based on a single user. The locations in the co-occurrence space (c, C) can also contain
the subscript . . .uk

, but no superscript.

uk ∈ U The users in the Flickr data set
W The world; subspace of R

3

Rs, Rt Starting region, target region; Subspaces of W
l ∈ L All geotags in the data set, subset of W
f Function describing a set of geotags
Φ Function describing the Gaussian convolution of f

p ∈ P The peaks of Φ

c ∈ C Points in the co-occurrence space; Subset of R
6

zero. While Flickr provides the geotags in latitude and longitude we will use Cartesian
coordinates throughout this work, which is more efficient for the computation of
Euclidean distances between points. The distance between two points is measured
through the crust of the Earth instead of over the surface. This difference is negligible
for small distances and rank equal in general.

The data from half of the users (the training set) will be combined in a model that
captures the similarities between the most important locations in two regions. With
the data from the other half of the users (the test set) the application of the learned
co-occurrence model for personalized travel recommendations will be evaluated. We
split the data in equally sized training and test sets by first ranking all users according
to the number of geotags. In this order, we select users 1, 4, 5, 8, 9, . . . as training
users and 2, 3, 6, 7, 10, . . . as test users, so the two sets will roughly follow the same
distribution.

The objective of this work is to predict the visited locations of a test user uk ∈ U

U

L

u2 Φ

l ∈ R

Conv.

u1

Φu1

ΦCC

Conv.
TRAIN 

TEST 

Baseline Recommendation 

Figure 8.5: Experimental setup. The training users generate the global travel distribution
Φ and the location similarity model ΦCC . The performance of both models for location
recommendation in a predefined region R is evaluated on the test users.
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in a target region Rt ⊂ W, based on the geotags of that user in a starting region
Rs ⊂ W. A region R can refer to either a city or a country from Table 8.1. To evaluate
the performance of the location prediction we remove all the geotags of uk that lie
within Rt and use the geotags of uk in an other region Rs to predict the location of
the removed data. For this evaluation setup we need users that have visited at least 2
distinct regions. Obviously, when the recommender is operational, recommendations
can already be made when a user has visited a single region.

To build the location similarity model between Rs and Rt, we first find the most
popular locations in these two regions. We use a kernel convolution of the training
data with a Gaussian kernel to smoothly cluster the geotags that are near to each
other (Section 8.5). We also find the most important locations per user by computing
the kernel convolution over only the user’s geotags. Both resulting distributions (Φ,
Φuk

) are combined in the co-occurrence space ΦCC which estimates the relations
between the top locations in both regions (Section 8.6). The model Φ will be used to
generate a baseline ranking (Section 8.7.1), the model ΦCC will be used to predict a
personalised location ranking per user (Section 8.7.2-8.7.3).

8.5 Peak Finding (Φ,Φuk
)

The geotags of all users are described by the function f which has a Dirac delta pulse
at the locations where one of the users created a geotag and zero otherwise:

f(z) =
∑
l∈L

αlδ(z − l) (8.1)

where αl is a parameter that allows the assignment of different weights per geotag.
In this work αl will be set to 1 for all l, other weighting strategies will be discussed in
Section 8.8.

We propose to use a Gaussian kernel convolution to obtain a smooth estimate of
the density of all photos on the planet Φσ = f ∗ gσ, where the Gaussian kernel is
described by gσ(z) = e−‖z‖2/2σ2

, for z ∈ R
3. The standard deviation σ is used as a

scaling parameter (or bandwidth) which gives the opportunity to set the size of the
recommended locations. We do not use the common normalisation parameter of a
probability density estimation with Gaussian kernels (1/n

√
2πσ2, with n the number

of data points) so that the convolution result will directly estimates the total number
of photos taken at a certain location instead of the probability. In the rest of this work,
we will drop the subscript σ for readability.

In the same way the function describing the geotag profile of a single user uk is
given by:

fuk
(z) =

∑
l∈Luk

αlδ(z − l) (8.2)

And the density estimate Φuk
= fuk

∗ g.
We use P and Puk

to denote the local maxima or peaks of Φ and Φuk
respectively.

These peaks represent the most popular locations for all or a single user. A mean shift
procedure is used to efficiently find the peaks of the functions [20]. We evaluate the
peaks at 19 values of σ evenly distributed on a logarithmic scale from 10 m to 10 km
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Figure 8.6: The circles indicate the top-100 peaks in San-Francisco at σ = 100 m where
the radius is related to the peak amplitudes. The underlying data points clearly show the
structure of the touristic part of the city.

for cities and 1 km to 1000 km on country scale. To ensure that all local maxima are
found, we initiate the mean shift procedure with all individual geotags for compu-
tation on the finest scale. On each subsequent scale σ, we use the peaks from the
previous scale as seeds. This procedure results in a scale-space that represents the
structure of the data and allows us to analyse it at various scales.

The peaks p ∈ P, found by the mean shift procedure on all geotags, can now be
ranked based on their amplitude to obtain a popularity ranking of the locations in
region R at scale σ. The application of the mean shift algorithm on geotag data was
already proposed by Crandall et al. Compared to their work our scale-space will be
more accurate because we use Cartesian coordinates instead of mapping latitude and
longitude in a 2D plane [28]. Also, our method differs from Crandall et al. as we use a
Gaussian kernel instead of a uniform disk. The Gaussian kernel convolution results in
a smooth density estimate and does not generate plateau peaks. Other notable similar
methods to define a popularity ranking of all locations in a given area are the scale
specific clustering in Yahoo!’s World Explorer [1; 104] and the tree-based hierarchical
graph used in Microsoft’s GeoLife project [145]. We chose to use the Gaussian scale
space as it has a strong theoretical foundation [78] and will show to provide a logical
solution to the co-occurrence model.

In Figure 8.6 the data points of the training users in the city center of San Francisco
are shown (the actual bounding box used in this work is larger). The top-100 peaks
with largest amplitude at σ = 100 m are depicted by circles. The clustering shows that
the proposed model does capture most of the well known landmarks like Alcatraz,
Union Square Park, Coit Tower, Yerba Buena Gardens and Pier 39. Long stretched
landmarks like the Golden Gate Bridge, are not represented by a single cluster but
several clusters appear at the popular view points. Figure 8.7 shows the country
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Figure 8.7: The polygons of the European countries in the top-10 most visited (Blue),
top-20 (Green), top-30 (Purple) and top-40 (Yellow). The circles indicate the peaks in the
top-10 most visited countries with σ = 21.5 km, the radius is related to the peak amplitudes.

polygons in western Europe and for the countries in the top-10 the clusters are shown
at a scale of σ = 21.5 km. Most of the main cities are clearly visible on the map.
The west of the Netherlands is grouped into a single cluster at this scale, which is
reasonable as it is often seen as a single metropolitan area. At smaller scales the
individual cities appear.

For computational efficiency we will only experiment with the top-500 peaks in
each region. To check whether we are missing any important peaks in this step we
look at the peak amplitude of the 500th peak in Figure 8.8. As the contribution of
each geotag to a peak ranges between 0 and 1, the peak amplitude estimates the
number of photos taken there. Because a user can make multiple photos at a single
location, the number of users that contribute to the peak will be smaller: users <

photos ≈ Peak amplitude.
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Figure 8.8: The distribution of peak amplitudes at the smallest scales that will be used
for evaluation in cities and countries. Left: Each line shows the peak amplitudes in one of
the top-10 cities at σ = 46 m. Right: Each line represents one of the top-10 countries at
σ = 6.8 km. The dotted lines indicate the cutoff at 500 peaks.
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Figure 8.9: Co-occurrence model. Each user’s peaks are mapped into the co-occurrence
space (visualised for two users). At the Top-500 peak locations of the prior distribution Φ
the result of the kernel convolution in the co-occurrence space ΦCC is evaluated. For one
point the computation of the contribution of both users is demonstrated. For visualisation
purposes the 6D co-occurrence space is shown in 2D (left) and 1D (right).

The values chosen for σ will be explained in Section 8.7.1. At σ = 46 m there
are only three cities where the 500th peak has an amplitude larger than 10 (London,
New York, San Francisco). There are two countries (USA East and USA West) that
still have large peaks after the top-500 (Amplitudes: 57 and 28). We believe that a
cluster smaller than 10 photos is insignificant for our task and conclude that in most
regions no important locations will be lost due to the selection of the top-500 peaks.

8.6 Co-occurrence Model (ΦCC)

When visiting a country or city, most users actively plan their trip and choose the
landmarks to visit based on their interests. Especially, making a photo at a certain
location is a clear indication of interest in that location. Based on these assumptions,
we propose to estimate the similarity between two location by the number of users
that have made a photo at both places. As geotags are continuous points in W ⊂ R

3,
a method needs to be found that counts the contribution of each of these points to a
pair of landmarks.

We propose to create the location co-occurrence model between two regions Rs

and Rt as follows. At a chosen scale σ the locations visited by uk are selected by
taking his peaks ps

uk
∈ Ps

uk
from Rs and pt

uk
∈ Pt

uk
from Rt. The location co-

occurrences for this user between the two regions are given by cuk
∈ Cuk

, where
Cuk

=
{〈

ps
uk

, pt
uk

〉 |ps
uk

∈ Ps
uk

, pt
uk

∈ Pt
uk

} ⊂ R
6 is the set of all pairwise combinations

of this user’s peaks in both regions. The points in the co-occurrence space are visu-
alised for two users by the black triangles in Figure 8.9.

When all the peaks of all users are added to this co-occurrence space, the most
dense regions represent location pairs that are often visited by the same users, and
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therefore indicate a strong similarity between the two locations. A smoothed predic-
tion of location similarities can now be derived by computing the kernel convolution
over the co-occurrence space, which will be denoted as ΦCC . However, since this
space may contain millions of 6 dimensional data points, applying the mean shift
algorithm to find the local optima is computationally expensive.

However, the locations of the most prominent landmarks are already known from
Ps and Pt. Therefore we only need to evaluate the value of ΦCC at the pairwise
location combinations from Ps and Pt, visualised as orange circles in Figure 8.9. For
example, when ps

m and pt
n are two peaks in Φs and Φt respectively, and the combined

location is given by cm,n = 〈ps
m, pt

n〉 ∈ R
6, the co-occurrence of these two landmarks

is defined by the sum over all user contributions:

ΦCC(cm,n) =
∑

uk∈U

∑
cuk

∈Cuk

e−d(cm,n,cuk
)/2σ2

(8.3)

where d(cm,n, cuk
) is the Euclidean distance between the evaluated landmark combi-

nation cm,n and cuk
is a location co-occurrence in the profile of uk. As we have limited

the number of peaks per region to 500 there will be maximally 250,000 evaluation
points per combination of Rs and Rt.

The upper left point in the co-occurrence space example in Figure 8.9 illustrates
that peak intersections from Φs and Φt may exist that do not generate a peak in the
co-occurrence space ΦCC : if two locations are simply never visited by a single user,
the co-occurrence will be zero.

We illustrate the computation of ΦCC at the bottom right evaluation point in Fig-
ure 8.9. Three user points contribute significantly to the co-occurrence peak, although
also the small contributions from the other peaks are taken into account. The illustra-
tion also indicates that the actual peak in the co-occurrence space might be slightly
shifted to a different location. The impact of the error introduced by this approxima-
tion is discussed in Appendix A.

8.7 Results

8.7.1 Baseline Optimisation and Evaluation Criteria

As a baseline, the peaks in Rt will be ranked on the score determined by the general
popularity: S(pt

n) = Φ(pt
n). This results in a static ranking, equal for all users. After

ranking the locations, we compute the distance of each of the recommended locations
to the nearest peak of the test user in Puk

(at the same σ). We then set a threshold
PC on this distance and count a recommended location as correct if the nearest of
the user’s peaks lies within this threshold. At small scale values, many peaks will be
predicted close to each other. To make sure the recommender does not get rewarded
for the suggestion of a single landmark multiple times, we disqualify a recommended
location if it lies within distance PC from an earlier prediction.

The predicted location ranking will be evaluated on four criteria:

Precision (P@5), defined as the fraction of correct recommendations in
the top-5.
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Figure 8.10: Performance of the baseline ranking using MAP@50. Left: Results on city
scale, for the full range of σ and PC ∈ {25, 50, 100, 200}m. Right: Results at country scale
for PC ∈ {5, 10, 20} km.

Mean average precision (MAP@50), the mean over the precision values
after each correct recommendation in the top-50.

NDCGIP. Similar to Zhou et al. we want to express the surprisal value of
the recommended list in a number [147]. We propose to use the Nor-
malised Discounted Cumulative Gain (NDCG) by Järvelin and Kekäläinen
which compares the predicted ranking to the optimal possible ranking [62].
The NDCG allows the assignment of a gain value to account for differences
in relevance between the ranked objects (please refer to [62] for details).
To measure the surprisal value of the predicted ranking we set the gain of
each correctly recommended location pt

n to the inverse popularity 1/Φ(pt
n)

abbreviated as IP, so that less popular locations contribute more to the re-
sult than popular locations. Then we compute NDCGIP over the resulting
ranking. The optimal NDCGIP will be obtained when we correctly predict
all the user’s test locations, but in reverse order of popularity.

Benefit ratio (BR), the number of users who get an improved recommen-
dation over the baseline divided by the number of users who get a deteri-
orated recommendation. BR can be computed over any of the previously
defined evaluation methods.

To only evaluate users who have provided a decent amount of preference infor-
mation, we consider those users who have at least 5 peaks at the lowest level of the
scale-space (|Puk

| ≥ 5). At city scale this pruning step means that users must have at
least 5 peaks in Φuk

at σ = 10 m. At country scale, users need to have at least 5 peaks
in Φuk

at σ = 1 km.
The optimal σ at a chosen value of PC will be estimated based on MAP@50. Com-

pared to P@5, the results on MAP@50 more gradually change with different values
of σ, therefore parameter optimisation on MAP@50 gives a more reliable estimate of
the optimal setting. P@5 however gives a more intuitive evaluation on the practical
usability of the recommender. We will therefore show the results on both criteria in
the next sections.
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Figure 8.11: Computing recommendations with the location co-occurrence model. For
each peak ps

m in Rs all contributions of all the user’s geotags are aggregated using a
Gaussian distribution as weight function. Then the final score of a location pt

n in Rt is
derived from the sum over all ps

m.

In Figure 8.10 the mean MAP@50 is plotted for the baseline ranking for the full
range of σ values and various settings of PC. For all settings, the choice of σ has a
clear optimum. When σ is chosen too small, multiple peaks exist at a single landmark,
while for too large σ individual landmarks will be missed because they are merged
into a single peak. At city scale the optimal σ is found close to the selected value of
PC. At country scale we find that the optimal σ is larger. This can be explained by
the fact that within a city the ratio between the point of interest size and the distance
between them is larger than in a country.

At both city and country level, we select two scales for further evaluation. Within
city recommendation will be evaluated at PC = 50 m, σ = 46 m and PC = 100 m,
σ = 100 m. At country scale we will evaluate recommendations at PC = 5 km,
σ = 6.8 km and PC = 10 km, σ = 21.5 km.

8.7.2 Recommendation

8.7.2.1 Generating Recommendations

We compute ΦCC(〈ps
m, pt

n〉) for all paired peaks in the top-500 ps
m ∈ Ps and the top-

500 pt
n ∈ Pt in all combinations of Rs and Rt (the top-10 cities and countries),

based on the set of training users. The derived models can now be used to generate
recommendations for the test users.

As explained in Section 8.4 the geotags of test user uk in a starting region Rs will
be used to predict the visited locations in Rt. The predicted location ranking in Rt

will then be compared to the locations actually visited by uk. In order to evaluate
the performance of the predicted recommendations for a test user, the user therefore
needs to have visited at least two distinct regions. In both regions we enforce the
pruning settings at |Ps

uk
| ≥ 5 ∧ |Pt

uk
| ≥ 5 as explained in Section 8.7.1.

The score of location pt
n in Rt for user uk is now derived by:

SCC(pt
n, uk) =

∑
ps

m∈Ps

∑
ps

uk
∈Ps

uk

ΦCC(〈ps
m, pt

n〉)e−d(ps
m,ps

uk
)/2σ2

(8.4)
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Table 8.3: Results of the baseline (S) compared to the recommender (SCC), for two scales
at both city and country level.

City Country
PC = 50 m PC = 100 m PC = 5 km PC = 10 km
σ = 46 m σ = 100 m σ = 6.8 km σ = 21.5 km
S SCC S SCC S SCC S SCC

P@5 0.237 0.237 0.293 0.300 0.266 0.274 0.257 0.261
MAP@50 0.311 0.312 0.370 0.377 0.437 0.445 0.482 0.488
NDCGIP 0.237 0.238 0.272 0.277 0.287 0.293 0.358 0.365
BR-P@5 1.034 1.375 1.419 1.337
BR-MAP@50 1.046 1.246 1.248 1.298
BR-NDCGIP 1.108 1.361 1.292 1.476

which counts the contribution of each of the user’s peaks ps
uk

in Rs to each of the
landmarks ps

m in Rs, and weights each of these landmarks with the co-occurrence
model. To predict the recommendations for uk when traveling to Rt, the locations
pt

n are ranked according to this score and the top ranked locations are recommended.
This computation is visualised for a user uk with three geotags in Rs in Figure 8.11.

8.7.2.2 Recommendation Performance

We now compare the ranking on S to the ranking predicted by SCC . Table 8.3 con-
tains the results at the two selected scales for between-city and between-country rec-
ommendation. The presented values are averaged over all possible recommendations
for all city/country pairs in the top-10 lists. At city scale the results are based on
16,620 measurements, with an average user size of 9 locations (median). At country
scale we can evaluate 13,476 recommendations, with a median user size of 7.

For all settings and all evaluation methods our model improves over the baseline.
We test the significance of the improvement using a Wilcoxon signed rank test, which
tests the hypothesis that the difference between the matched samples in the two sets
comes from a distribution with zero median. At a confidence level of 1% only the
results on P@5 for σ = 46 m are not significant. Probably too many landmarks will
be represented by multiple peaks at this scale, making the co-occurrence model less
accurate.

The improved results on NDCGIP indicate that not only the rank position of the
test results improves, but also the surprisal value of the presented recommendations.
The co-occurrence model gives better performance while less popular locations are
observed at the top of the ranking. This shows that the method correctly learns how
the preference of the user differs from the average.

Although BR shows a decent improvement when the recommendation model is
used, the mean absolute improvement on the individual evaluation criteria is small.
For many users the popularity based baseline and the personalised ranking of rec-
ommended locations are very similar. Two reasons can be given for these small dif-
ferences. First, many users do not have a single preference (e.g. only visit botanical
gardens), but visit many types of landmarks when they come to a new location. With
the proposed co-occurrence model, the combined recommendations based on these
mixed preference profiles converge to the prior ranking. Second, because many peo-
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Table 8.4: Results of city scale recommendation at σ = 100 m for different tourist filters.
The best results are obtained for the most strict filter (1x14).

City, PC = 100 m, σ = 100 m

All 3x14 2x14 1x14
S SCC S SCC S SCC S SCC

P@5 0.293 0.300 0.321 0.330 0.331 0.339 0.339 0.351
MAP@50 0.370 0.377 0.409 0.417 0.419 0.427 0.430 0.440
NDCGIP 0.272 0.277 0.301 0.308 0.307 0.314 0.318 0.325
BR-P@5 1.375 1.511 1.491 1.687
BR-MAP@50 1.246 1.338 1.358 1.422
BR-NDCGIP 1.361 1.491 1.547 1.614
Recs 16,620 8576 6600 3536

ple visit the most popular locations in the target region the evaluation method actually
expects us to recommend these. This is inherent to the evaluation of recommenda-
tions with a train and test set.

In Section 8.7.3 we will see that when a single type of landmark is used as starting
location and we manually asses the recommended locations, the prediction is highly
accurate and we can use more extreme weighting methods to exploit the location
co-occurrence.

8.7.2.3 Tourist Filter

We hypothesize that people who visit both Rs and Rt for touristic purposes will bene-
fit more from the recommendations than people who actually live in one of the cities.
To confirm this hypothesis we implement a tourist filter as follows: Based on the cre-
ation date of the photos in the Flickr data a user qualifies as tourist in a certain city if
all his photos in that city are taken in n periods of 14 days. So in the 3x14 filter we
allow the user to visit a single city 3 times, and all the user’s photos have to be taken
in at most 3 different windows of 14 days.

The results with three different tourist filters applied in both Rs and Rt are pre-
sented for σ = 100 m in Table 8.4. First, we observe that both the baseline and the
recommendation performance go up when a more stringent filter is used. So tourists
conform more to the overall visiting behaviour than city inhabitants. Second, when
we set a more strict tourist filter, the performance difference between the recom-
mender and the baseline goes up. This means that touristic behaviour in one city
should be predicted by touristic behaviour in another city.

Table 8.4 also indicates the number of recommendations (Recs) that can be eval-
uated with each filter. We need a user two have made a touristic visit in at least two
different cities in order to evaluate the performance. These two criteria cause the
number of evaluations to drop quite quickly.

8.7.2.4 Within-City Recommendation

Song et al. showed that the every day mobility patterns of people are highly pre-
dictable 93% of the time [121]. Other related work on location prediction also fo-
cused on making recommendations close to the current location of a user [57; 128;
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144]. We suspect that prediction of touristic behaviour in previously unvisited areas
is a much harder task. First, touristic behaviour is less predictable than every day
life behaviour. Second, remote predictions allow many more possibilities than nearby
recommendations.

To test whether we can use our model for within-city recommendations we com-
pute the co-occurrence space ΦCC within each city (Rt = Rs) and set the self co-
occurrence of each location to 0. For each user uk in the test set that has been to Rt,
we cut off the last day of photos made in that city. We use the geotags created by uk

on all previous days as starting points and try to predict the user’s behaviour on the
final day of his stay. To split the user’s data in days we use the creation date and time
of the photos shifted backwards by 4.5 hours based on the results in Figure 8.2.

Table 8.5 gives the results at σ = 100 m averaged over all users (No pruning),
and limited to users who have at least 5 peaks in Pt

uk
at this scale in both the test

day and the training days. The absolute evaluation scores are lower than the scores
reported in between-city recommendation, because we have fewer evaluation points
in this setup. After pruning, the median user has 6 points on the test day, compared
to a median of 9 in city to city recommendation.

The relative improvement with the personalised model is much larger for within-
city recommendation than that for between-city recommendation. Especially for users
with many geotags on the training and test day the personalised prediction clearly
outperforms the baseline. Unfortunately, only few users (Recs) have provided enough
data to pass the pruning settings. These findings indicate that adapting the location
prediction to a user’s personal interest is easier if the user stays within the same city.

We assume that the reason for this improvement is that users have a bias to make
many photos within a certain area (e.g. close to the hotel). To verify this, we plot the
probability density function (PDF) of the distance between two randomly selected
geotags and the PDF of the distance between a geotag selected from the training days
and a geotag selected from the test day of a single user (Figure 8.12). The dotted
lines indicate the median of both distributions. Clearly the geotags selected from a
single user have a larger probability to be close together. This location prior explains
why recommendations within a single region are easier to predict than between two
remote locations, confirming the second intuition given above, that remote locations
allow more possibilities than nearby ones.

8.7.2.5 Conclusions

Because many users visit the same popular locations, prediction according to the prior
travel probability is hard to improve upon. Although the absolute improvement is
small, the co-occurrence model can give improved recommendations for most users.

Tourists can be selected by setting a maximum value on the number of days spent
on a certain location. We find that tourists comply more with the general travel pref-
erence and are therefore more easy to predict by the baseline. Also, the relative im-
provement of the personalised model over the baseline is larger than for the average
user, which shows that tourists have a clear preference that relates their behaviour in
different cities. This shows that the location co-occurrence model based on the travel
history of tourists can effectively be used to predict personalised travel recommenda-
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City, σ = 100 m, PC = 100 m

No pruning |Pt
uk

| ≥ 5

S SCC S SCC

P@5 0.042 0.047 0.108 0.129
MAP@50 0.099 0.119 0.197 0.244
NDCGIP 0.126 0.141 0.208 0.234
BR-P@5 2.452 5.182
BR-MAP@50 1.966 2.690
BR-NDCGIP 1.982 2.531
Recs 18,344 896

Table 8.5: Results on recommendation of
the locations for the last day of a city visit.
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Figure 8.12: PDF of distance between two
random geotags and between the last and
previous days of a single user (user day ).

tions. We have used a simple tourist filter and suggest that more elaborate methods
could be used based on the users’ profile information or textual tags.

Within-city recommendations are easier because the training data contains a lo-
cation prior. If we know where the user was in the past few days, he is more likely to
be in the same place the next day.

8.7.3 Serendipitous Ranking

8.7.3.1 Ranking Criteria

Using part of the users’ real data points as test set, we have evaluated whether we can
predict where the user will go if he is not influenced by a recommender. This evalu-
ation is however strongly biased by the most popular locations in the target area. As
most people will visit the Eiffel Tower when they get to Paris, it pays off to predict this
with the recommender. However, the user would benefit more from a recommenda-
tion of a location that is not obvious and perhaps even unknown to the user. Related
work on recommender systems has therefore argued that manual judgement of the
recommended items is necessary for the evaluation of novel recommendations [19].

To test whether the proposed co-occurrence model can be used to produce serendip-
itous recommendations, we have manually annotated various sets of landmarks at city
and country scale. We first use one of the landmarks (ps

m) in Rs as starting point and
try to predict the annotated landmarks (pt

n) that fall in the same category in Rt, using
the following known ranking criteria:

Prior (S) Ranking based on Φ(pt
n).

Direct (SCC) As the user profile now consists of only a single peak from
Φ in Rs, Equation 8.4 reduces to a ranking based directly on ΦCC(cm,n).

Cosine (CS) Ranking based on ΦCC(cm,n)/
√

Φ(ps
m)Φ(pt

n). Cosine simi-
larity corrects for the popularity bias by dividing the co-occurrence by the
popularity of both individual landmarks.

We also propose a new ranking method, which assigns the prior amplitudes (Φ)
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Table 8.6: Baseball stadium set. The prior rank is the rank index based on S in the
corresponding region.

Stadium City Prior Rank Longitude Latitude

Yankee Stadium New York 27 40.8271 -73.9281
City Field New York 44 40.7557 -73.8481
Richmond Co. Bank Ballpark New York 151 40.6457 -74.0761
AT&T Park San Francisco 13 37.7785 -122.3896
Dodger Stadium Los Angeles 12 34.0735 -118.2400
Nationals Park Washington 22 38.8729 -77.0076
Wrigley Field Chicago 5 41.9479 -87.6558
Cellular Field Chicago 18 41.8300 -87.6340

Table 8.7: Modern art museum set. The prior rank is the rank index based on S in the
corresponding region.

Museum City Prior Rank Longitude Latitude

Tate Modern London 4 51.5081 -0.0990
Museum of Modern Art New York 5 40.7610 -73.9771
Guggenheim Museum New York 12 40.7831 -73.9591
Centre Pompidou Paris 6 48.8604 2.3520
Hirshhorn Museum Washington 10 38.8888 -77.0230
MACBA Barcelona 7 41.3832 2.1668
Fundacio Miro Barcelona 28 41.3686 2.1597
Neue Nationalgalerie Berlin 23 52.5070 13.3681
Haus der Kulturen der Welt Berlin 21 52.5187 13.3648
Hamburger Bahnhof Museum Berlin 28 52.5283 13.3719

as weight to all locations and then compares the weight difference between the initial
and new ranking:

RankDiff (RD) Let R1 be the rank index (position in the ranked list) of
a location based on Φ(pt

n) and R2 the rank index of the same location in
ΦCC(cm,n). Let Ψ be the list of peak amplitudes of Φ ranked in descending
order. RankDiff is now defined as RD(pt

n) = Ψ(R2) − Ψ(R1).

The rationale behind this method is that a location that used to be at rank R1 and had
an amplitude of Φ(pt

n) managed to reach a new ranking of R2 where a location with
amplitude Φ(pt

x) used to be. The difference between these two amplitudes can now
be seen as the amount of evidence needed to accomplish this rank gain.

Note that we also considered other ranking algorithms, that performed worse or
very similar to any of the above (i.e. Jaccard coefficient, Pointwise Mutual Information
(PMI), Lift [129; 96]); the results of these ranking criteria are therefore left out of the
discussion.

8.7.3.2 City Scale

We manually annotate a set of baseball stadiums (Table 8.6) and a set of modern or
contemporary art venues (Table 8.7) in the top-10 cities. We now repeatedly select
one of the cities as Rt and rank all landmarks in that region based on one landmark
in Rs. As evaluation we compute the number of times a target location (from one
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Table 8.8: Results on baseball stadium and modern art prediction. Mark that the number
of test locations in all cities is small, therefore the maximum possible P@5 equals 0.30 for
baseball stadiums and 0.32 for modern art museums.

Baseball Modern Art

Method Up Down P@5 R@5 P@R Up Down P@5 R@5 P@R

S 0 0 0.04 0.09 0 0 0 0.07 0.26 0
SCC 45 3 0.16 0.58 0.29 53 18 0.10 0.41 0.19
CS 41 7 0.15 0.47 0.24 30 49 0.07 0.27 0.06
RD 44 4 0.23 0.76 0.46 39 38 0.12 0.43 0.25

of the two sets) goes up or down in the ranking compared to a ranking based on
S, the precision at 5 (P@5), recall at 5 (R@5), defined as the fraction of correct
results ranked in the top-5 and precision at R (P@R), where R is the total number
of correct locations that can be recommended. For all evaluations the peaks in Φ at
σ = 100 m are used, since at this scale it is easy to manually relate each peak to a
single landmark.

The results in Table 8.8 show that almost all baseball stadiums are related to each
other as 45 out of 48 times a stadium gets a higher ranking based on co-occurrence
than on the prior (48 is the total number of possible ways to select two landmarks
from different cities). A ranking directly based on SCC does get the target locations
higher in the list, but the more popular locations are often still at the very top of the
ranking, resulting in a limited P@5, R@5 and P@R. The other methods make more
mistakes on up/down, but RankDiff clearly improves precision and recall. The P@R of
0.46 indicates that RankDiff gets the target stadium(s) to the very top of the ranking
in about half of the cases, which is a remarkable achievement given the relatively low
prior rank of the stadiums.

Further inspection of the ranking produced by cosine similarity shows that many
very small peaks are ranked at the top. Cosine similarity can easily generate a high
score when an unfamiliar starting location is used, if by coincidence the users who
have been there have also another location in common. RankDiff is somewhat more
conservative as it is more dependent on the absolute value of ΦCC than the relative
difference between ΦCC and Φ.

Although the modern art data set appears to be less coherent, the order of the
methods is similar. Because many of the venues already have a high prior ranking
it is hard to improve the prediction. RankDiff again gives the best performance on
precision and recall.

To study the benefit of having more profile information from a user, Figure 8.13
shows P@R and R@5 for the three personalised methods on both data sets while the
number of starting locations is increased. When two starting locations are located in
different cities we simply sum the ΦCC values before computing the ranking criteria.
The results are averaged over all target cities and all possible combinations of N

landmarks selected from the other cities.
When the recommendations from more starting points are aggregated the predic-

tion generally gets better. The prediction of baseball stadiums based on RankDiff even
reaches a R@5 of 1, meaning that in all cases the target locations are ranked in the
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Figure 8.13: Performance difference of SCC , Cosine and RankDiff with increasing profile
information (N ). The two left panels show the P@R and R@5 for Baseball recommenda-
tion, the right panels for Modern art.

top-5. If more information is present, Cosine similarity is less prone to mistakes and
shows a steep upward trend in performance.

8.7.3.3 Country Scale

To evaluate the co-occurrence model at country scale, we manually annotate a large
set of the peaks in USA West at σ = 21.5 km and select various starting locations in
other countries to see how they influence the ranking in USA West.

Based on the prior ranking (not shown) the top-10 of locations in USA West con-
tain 9 cities and only 1 national park (Yosemite NP). If we use Ayers Rock in Australia
as starting point we expect recommendations that refer more to natural locations and
less to cities. A ranking directly based on SCC does show that some natural parks in-
crease their ranking, but the co-occurrence with the top-4 cities is still larger, simply
because their prior visit probability is larger (see Table 8.9).

We find that especially cosine similarity returns very interesting recommendations.
Figure 8.14 and Table 8.9 show that almost all places in the top-10 refer to rock for-
mations in the USA, which is quite amazing since absolutely no semantic information
(like textual tags) is used in the prediction.

In this example, cosine similarity seems to give better results than RankDiff. On
this scale there are hardly any obscure peaks, therefore we can take the risk of using
a method that can get small peaks very high in the ranking, and cosine similarity
is able to get peaks from the lower part of the ranking to the top. This introduces
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Table 8.9: Top-10 recommendations based on Ayers Rock, Australia. R is the new ranking,
PR is the prior ranking (based on Φ).

SCC Cosine Rankdiff

R PR Location PR Location PR Location

1 1 San Fransisco 129 Painted Hills SP 4 Las Vegas
2 4 Las Vegas 122 Craters of the Moon NM 32 Bryce Canyon NP
3 3 Los Angeles 44 Monument Valley SP 44 Monument Valley SP
4 2 Seattle 99 Idaho Falls 36 Mt. Rushmore NM
5 32 Bryce Canyon NP 32 Bryce Canyon NP 13 Lake Tahoe
6 44 Monument Valley SP 36 Mt. Rushmore NM 14 Grand Canyon NP
7 5 Portland 62 Mt. Shasta 17 Maui
8 36 Mt. Rushmore 49 Crater lake 49 Crater lake NP
9 13 Lake Tahoe 141 Roswell 62 Mt. Shasta
10 14 Grand Canyon NP 153 Socorro / Box Canyon 122 Craters of the Moon NM

more risk in the recommender, but can also give more interesting and serendipitous
recommendations.

8.7.3.4 Conclusions

When the co-occurrence model is used to generate a location ranking based on a
single preference point, we observe great performance increase over the prior ranking.
A ranking based on SCC directly does get the correct locations higher in the list, but
not to the very top of the ranking. We find that more extreme weighting methods can
be used to fully exploit the co-occurrence model.

Cosine similarity can give very small peaks as recommendations when the co-
occurrence happens to be relatively large compared to the prior visiting probability.
The Ayers rock example showed that this can give very interesting results. Using
solely the location history of Flickr users, we were able to relate rock formations on
completely opposite sides of the world.

When limited information is available the risk of recommending something un-
known is high when cosine similarity is used. The proposed method RankDiff is more
conservative, the results are more reliable but may be less surprising. On a manu-
ally annotated set of baseball stadiums we showed that the RankDiff method is able
to perfectly predict where a stadium in an unvisited city is located if several other
stadiums are used as starting points.

8.8 Conclusions and Discussion

We have proposed to approximate the Gaussian kernel convolution over the co-occurrence
space of Flickr geotags to obtain a location similarity model. This new approach to
predict recommendations in a continuous object space can effectively be used to rec-
ommend locations matching a user’s preference. Recommendations can be made close
to the location of the user, so that we can suggest landmarks for the next day on a city
visit. More interesting, the co-occurrence model can be used to make recommenda-
tions in a previously unvisited city or country which is useful while planning a holiday.
The bandwidth of the Gaussian kernel controls the size of the target locations, which
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Query: Ayers Rock Painted Hills (1) Craters of the Moon (2)

Monument Valley (3) Bryce Canyon (5) Mount Rushmore (6)

 

Figure 8.14: When Ayers Rock in Australia is used as query, the top recommendations in
USA West contain many famous rock formations.

allows application at a scale of choice (city and country level in this work). The re-
sults suggest that recommendations based on the co-occurrence model are both more
accurate and more surprising than a ranking based on the prior travel probability. A
simple filter to distinguish inhabitants from tourists indicates that touristic behaviour
is more informative for the prediction of a user’s behaviour in another city.

In this work we have set the weight of all geotags equal, but the proposed model
can deal with differently valued data points. We discussed the choice to ignore the
number of photos in batch uploads, but a weighting method could be proposed to
integrate this information in the amplitude of the data point. Furthermore, the impor-
tance of a photo could be estimated on external information sources like the textual
tags or the interestingness ranking used by Flickr.

By filtering the set of geotags on the accuracy value in the Flickr database we
have selected only geotags that are accurate on street level, thereby losing about
40% of the original data. One could argue whether this accuracy filter is necessary
if predictions are made on a larger scale (e.g. between-country recommendation).
The function that describes a set of geotags is in this work defined as a collection of
Dirac delta pulses. To integrate the geotag accuracy into this function, it naturally
follows that each geotag could itself be described by a Gaussian distribution, where
the standard deviation is dependent on the accuracy. In this way inaccurate geotags
do not influence predictions on small scale, but do contribute on larger scales.

Recommendation evaluation with a training and test set has a drawback. Because
of the strongly skewed prior travel distribution most of the locations in a user’s test
set are well-known popular places. These places will dominate the parameter optimi-
sation of the model, resulting in a personalised model that does not differ much from
the prior ranking. The popular locations are however not the most interesting places
to recommend, because the user is probably already familiar with them or can easily
find them in regular travel guides.
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To really evaluate whether a recommender gives interesting, user specific recom-
mendations, manual assessments are inevitable. Using manually annotated locations
on both city and country scale we have shown that more strict ranking methods can
be used to produce more serendipitous recommendations. A ranking based on co-
sine similarity can give very interesting and novel recommendations, but also has the
possibility of recommending something irrelevant based on data noise. The proposed
RankDiff method is more conservative but gives stable good recommendations in all
experiments. Based on these results we can assume that these weighting methods will
also be more effective in a recommendation system, when the full user profile is used
as training data.

A Appendix: Full 6D Kernel Convolution

As indicated in the model description in Section 8.6, the computation of the co-
occurrence model at the prior peak locations is an approximation of the real peaks
in the co-occurrence model. To estimate the error introduced by this approximation
we have used the mean-shift algorithm to compute the peaks of the full Gaussian ker-
nel convolution on the 6D co-occurrence space for the city pair Berlin-Barcelona at
σ = 100 m.

We compare the top-50 similarity relations generated by both methods in the co-
occurrence space between Berlin and Barcelona. Using manual evaluation, we find
that 44 out of 50 relations uniquely refer to the same landmarks. The median distance
of the top-50 peaks in our approximation to the nearest peak in the full convolution is
26 m. The measured peak amplitude at the landmark locations will always be smaller
than the nearest peak in the full convolution. We find that the average decay in peak
amplitude in the approximation is -2.4%.

The small differences between both models show that the approximation proposed
in this work can effectively be used to predict the most co-occurring locations between
two cities.
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Semantics





9
Deriving Term Specificity from Social Tagging

Data

We address the task of determining the semantic specificity of terms from a
social tagging corpus. We propose that the specificity of a term is strongly
related to how well it represents the user’s information need and demonstrate
that the applicability extends beyond the tag domain and can improve effective
collection access by means of search or interactive browsing.
To quantify the pairwise relationship between two tags we identify three cases:
the tags are equally specific, one is more specific, or they are incomparable.
Both specificity and similarity measures are combined in a machine learned
approach to classify tag pairs into these classes.
Using a large tagging corpus, we compare existing and new methods to re-
late statistical term specificity with human assessments. We find that several
proposed methods are not strongly correlated and can thus be combined in
a single classifier. Using only three features we can decrease the specificity
prediction error by 27.4% over a prediction based on document frequency.
We demonstrate a new specificity metric that outperforms previously proposed
metrics, because it takes both tags into account while computing their relation.
Further, we investigate features to detect equally specific tags, and demonstrate
that similarity measures that take the tag context into account can improve
the prediction of related tags over traditional co-occurrence methods.

This Chapter is based on collaborative work with Yahoo! Research Barcelona: Maarten
Clements, Börkur Sigurbjörnsson, Vanessa Murdock and Roelof van Zwol. Deriving Term Speci-
ficity from Social Tagging Data. Yahoo! Research Barcelona. 2009.
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9.1 Introduction

Term specificity was related to inverse document frequency (IDF) by Sprck-Jones, who
discussed in 1972 that a query term which occurs in many documents is not a good
discriminator to satisfy the information need of the searcher [124]. She proposed to
weight the terms in a query by f(N)−f(n)+1 where N is the size of the collection, n

is the occurrence of the term and f is a function which computes f(n) = m such that
2m−1 < n ≤ 2m. This heuristically proposed method has since then been extensively
studied and forms the basis of many search applications [110; 107].

Sprck-Jones proposed that term specificity in an information retrieval system should
be treated statistically instead of semantically [124]. In this chapter we compare sta-
tistical methods that represent semantic specificity.

The semantic specificity of a term is dependent on factors other than the occur-
rence in the collection alone. A specific term may occur frequently if the term happens
to be popular in the community that created the collection. For example, we could
consider the terms html and knitting equally specific as both describe a method of con-
structing objects (either web pages or clothes). However, commercial search engines
return about 100 times more documents on HTML than on knitting. At the same time
the Flickr1 search engine returns about 100 times as many photos tagged with knitting
than photos tagged with html. This shows that the document frequency of a term is
domain dependent, and thus cannot be the sole source to derive term specificity.

With various tasks in mind different methods have been proposed to estimate
semantic term hierarchy. Document frequency and term entropy have been used as
an aid to create hierarchies like WordNet [36; 15; 111; 108; 65]. At the same time,
the ‘clarity score’ has been proposed to estimate the query difficulty [31; 50] and
vocabulary growth and entropy have been studied extensively in social media [17;
21; 83].

Joho and Sanderson recently studied the relation between document frequency
and semantic specificity [65]. They compared the WordNet structure to the document
frequency inferred from the Google search engine and TREC corpus2. When they limit
their test to words that co-occur in the same documents they find an overlap between
the WordNet hypernym structure and document frequency in different corpora to be in
the range of 81.4%-84.3%.

The goal of this work is to develop a better method to define the semantic speci-
ficity relationship between two terms and to evaluate whether it can improve ef-
fective collection access by means of search or interactive browsing. We propose a
framework in which we classify each pair of terms into any of the classes: More/Less
specific (>,<), Equally specific (==) or Incomparable (!=). We discuss the individ-
ual performance of new and previously proposed specificity and similarity features
to distinguish between these classes and evaluate which features can be combined to
improve the classification performance. Using 3112 manually assessed tag pairs and
the Flickr tagging corpus, we directly optimize a linear support vector machine (SVM)
classifier to the semantic classification of human judges.

1http://flickr.com/
2http://trec.nist.gov
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Table 9.1: Notation used in this chapter.

T The set of all tags
ta tag a

I the set of all images
ia image a

U the set of all users
ua user a

I(ta) the set of images that are tagged with ta
U(ta) the set of users who used ta
T (ia) the set of tags assigned to ia

In tagged social media the document frequency of a term is not strongly related to
its specificity. While annotating pictures, users seek a trade off between specificity and
generality. Using general terms as content descriptors will lead to low retrieval pre-
cision.Thus general terms are not necessarily more frequent in social tagging systems
(e.g. In Flickr animal occurs less frequently than dog).

As Flickr’s tagging system does not aggregate the number of times a certain tag
has been added to a photo, the term frequency (tf) is always 0 or 1. Therefore the
common ranking function wi = tfi × log(D/dfi) depends solely on the global term
weight (df). This puts a lot of pressure on the importance estimation of the query
terms.

To summarize, the contributions of this work are as follows. Using a linear clas-
sifier we improve the performance of specificity and similarity detection over previ-
ously known methods. We propose a method (sub-super) that outperforms previous
specificity metrics. The method takes the relation between two terms into account,
whereas previous metrics are computed over each term individually. We show how
the optimal classifier can be used to create a network of tags with pair-wise specificity
relationships and we discuss how this work can be used in a browsing interface or
directly applied to weight the terms in a search query. Finally, we show that similarity
measures that take the context of tags into account can be used to separate tags that
frequently co-occur from truly comparable tag pairs.

We discuss methods to estimate term specificity in Section 9.2 and term similarity
in Section 9.3. Related work is interleaved in these two sections, as it relates to each
metric. The variables used in these sections are listed in Table 9.1. In Section 9.4
we describe the experimental setup, including the data, the manual specificity assess-
ments, and the inter-assessor agreement study. In Section 9.5 we present the classifier
and the experimental results.

9.2 Specificity

The notion of semantic specificity is hard to define. Here we base our work on the
Merriam-Webster definition that specific is free from ambiguity3. We see specificity as a
gradual concept, so based on this definition a more specific tag will be less ambiguous.
If a tag has little ambiguity it is more likely that it will be attached to photos with

3http://www.merriam-webster.com/dictionary/specific
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Figure 9.1: The growth rate of the vocabulary size conditioned on three different tags.
The vocabulary size is the number of unique tags attached to a random set of photos that
contain the target tag. Each tag is represented by 10 lines based on different permutations
of the images that contain the tag.

similar content. Photos that show similar content will probably be annotated with a
similar set of tags. In other words, there is more coherence in the annotations given
to these photos. Therefore most of the specificity methods that we will present are
based on the idea that more specific tags co-occur with a more coherent tag set.

9.2.1 Document Frequency (DF)

Document frequency has been used as a measure of statistical specificity, although it
has always been recognised that there is a discrepancy between document frequency
and semantic specificity [124]. This notion of specificity has proven to be useful in
information retrieval to give less weight to common terms [124; 110; 107].

We represent the document frequency of a tag by the probability that a random
image contains the tag:

DF (ta) = P (ta) = |I(ta)|/|I| (9.1)

9.2.2 Vocabulary Growth (VC)

The vocabulary size of a collection is defined as the number of unique terms occurring
in it. There have been many studies of vocabulary size both in text domain and social
tagging systems. Heaps’ law states that as more documents are added to the collec-
tion, there will be diminishing returns in terms of discovery of the full vocabulary
from which the distinct terms are drawn [4].

Cattuto et al. found that the vocabulary growth in tagging systems follows a pow-
erlaw with an exponent around 0.8, even when conditioned on a single resource [17].
Marlow et al. looked at the vocabulary growth within individual user libraries in
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Flickr [83]. Golder also showed that there is large variation between the vocabulary
growth of individual users by studying the delicious network [44].

Vocabulary growth has been studied conditioned on certain users or documents,
but not conditioned on a single word. Intuitively the size of the vocabulary related
to a single term is a measure of specificity, because terms that describe a very specific
concept always co-occur with a similar set of other terms. Figure 9.1 shows the speed
of vocabulary growth conditioned on three different tags. For these three tags the
growth rate of the vocabulary is clearly related to the specificity of the tag, while the
document frequency (total Nr. of photos) is not.

The full tag vocabulary in Flickr shows a sublinear growth closely following a
power law with exponent 0.7. The exponent of the 3 tags in Figure 9.1 ranges be-
tween 0.4 and 0.5. We find that the estimation of the power-law exponent is too
unstable to use as specificity measure. We therefore use the absolute vocabulary size
of 1000 randomly sampled images that contain the target tag. To be independent of
temporal variations in global tagging behaviour in Flickr, we compute the vocabulary
size on 10 random subsets of 1000 images and use the mean as specificity feature.

9.2.3 Entropy (EN)

We look at the entropy of all tags co-occurring with a given tag ta. A high entropy of
co-occurring tags suggests that the given tag is a broad concept and adding the term
to a query would not make the query much more informative.

EN(ta) = −
∑
w∈T

P (w|ta) log P (w|ta) (9.2)

where the probability of observing a tag w given ta is based on the number of images
annotated with both tags:

P (w|ta) =
|I(ta, w)|
|I(ta)| (9.3)

In textual documents, Caraballo and Charniak used the entropy of the surround-
ing text to identify the specificity of nouns [15]. Using this method they could predict
around 80% of the hypernym relations in WordNet. In social media, Chi and Mytkow-
icz looked at the tag entropy evolution compared to the document entropy evolution.
They conclude that the document entropy increases faster which will eventually lead
to decreased retrieval performance if a social network continues to grow [21].

9.2.4 Simplified Clarity Score (CL)

The clarity score is defined as the relative entropy (or KL-Divergence [71]) between
a language model based on the query and the corresponding collection language
model [31; 50]. Simplified to a tag consisting of a single term ta:

CL(ta) =
∑
w∈T

PT (w|ta) log
PT (w|ta)
PT (w)

(9.4)

where PT (w) =
∑

i∈I |T (i)|/|T | and the probability of observing a tag w given ta is:

PT (w|ta) =
∑
i∈I

PT (w|i)PT (i|ta) (9.5)
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For coherency with related work the probabilities are computed over the event space
of all individual tag assignments instead of images as in the other features.

Similar to [125] we set the probability of observing a photo given the tag equal
for all photos that contain that tag: PT (i|ta) = 1/|I(ta)|.

As proposed by He and Ounis [51], we use the maximum likelihood approxima-
tion of PT (w|i). Because photos in Flickr do not aggregate the tags from different
users, but maintain a single list, the term frequency is always one, so PT (w|i) =
1/|T (i)|.

Intuitively, if the language model generated by a tag is very similar to the collec-
tion model, the tag does not add any information and is thus not useful to query the
database. It has been shown that the clarity score can be used to estimate the diffi-
culty of a query for a retrieval system [31; 50]. The query difficulty is directly related
to the specificity of the query, as a more specific query is easier to answer.

9.2.5 Sub-Super (SS)

This method assumes that if two tags can be ordered by specificity, the subsets of the
specific tag will also be subsets of the general tag, but not the other way around.
For example, all important subsets of the tag paris (e.g. louvre, eiffel, notredame)
also co-occur with the tag france, but not all subsets of france co-occur with paris
(e.g. toulouse, bordeaux, lyon).

To exploit this relation we compute the sub-super relation between the two tags
SS(ta||tb) by:

SS(t_a||t_b) = 0;

subs = GetSubs(t_a);

for t_x in subs:

supers = GetSupers(t_x);

if t_b in supers:

SS(t_a||t_b)++;

where GetSubs(t_a) gets the 100 tags tx that give the highest P (ta|tx), with the
limitation that |U(tx)| > 0.01 × |U(ta)|. This limitation prevents the selection of
very rare terms. GetSupers(t_a) gets the top-10 tags tx with the largest probability
conditioned on ta: P (tx|ta).

The example in Figure 9.2 shows the top Subs and SS(ta||tb) of the tag ta = barcelona.
The top-10 Subs are clearly subsets of Barcelona (mainly prominent landmarks de-
signed by Antoni Gaud́ı). The top-10 SS(ta||tb) contain the most prominent super
sets of the Subs. For example, spain is a super set of 80 out of 100 Subs of barcelona,
indicating that spain is probably more general than barcelona. The tag gaudi also has
a relatively high score (SS(barcelona||gaudi) = 32), the reversed relation is however
still higher (SS(gaudi ||barcelona) = 76), indicating that the evidence of gaudi <

barcelona is stronger than the reversed relation.
Instead of computing a global specificity score for each individual tag and deriving

the relation from the difference between these scores, the sub-super method takes
both input tags into account when computing their relation. Because of the ambiguity
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Tag ta: barcelona

Subs: larambla, lasagradafamilia, casamilà,
casamila, casabatlló, sagradafamilia, torreag-
bar, casabatllo, parcguell, parcgüell

Sub-Super: [spain, 80], [catalunya, 60],
[gaudi, 32], [españa, 30], [catalonia, 28],
[architecture, 27], [2007, 19], [europe, 19],
[sagradafamilia, 14], [espagne, 11]

Figure 9.2: Example of the top-10 subsets of the tag barcelona (Subs) and the top-10
tags with highest SS(ta||tx) plus their occurrence count (Sub-Supers). Mark that Flickr
concatenates multiple word tags.

of tags we believe that a method that considers both tags in the computation of their
relation should outperform global specificity methods.

9.3 Similarity

The semantic specificity ordering of terms only makes sense if the terms can be com-
pared in the same domain. Besides the relative specificity difference we define term
similarity features to quantify the relatedness of the terms.

We define two sets of methods to determine the similarity between two tags. Co-
occurrence methods use direct occurrence frequency statistics, and include the joint
probability, the cosine similarity, and the jaccard coefficient. Context methods find the
similarity between the context in which both tags occur. We represent the context as
the set of tags that co-occur with the target tag. We present three context methods:
Ranked list similarity, KL-divergence, and Sub-Super Sum.

9.3.1 Co-occurrence Methods

Tag co-occurrence is commonly used to derive a similarity metric between two tags [8;
118; 119]. Several similarity functions can be derived from co-occurrence:

Joint probability (JP) The probability that two tags co-occur in the annotation of a
randomly drawn photo:

P (ta, tb) =
|I(ta) ∩ I(tb)|

|I| (9.6)

Cosine similarity (CS) The cosine of the angle between two vectors:

CS(tb, ta) = cos(θ) =
I(tb) · I(ta)

‖I(ta)‖ ‖I(tb)‖ (9.7)

Jaccard coefficient (JC) The co-occurrence probability of two tags, normalized by
the union of both individual occurrence probabilities:

JC(tb, ta) =
|ta ∩ tb|
|ta ∪ tb| (9.8)
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9.3.2 Ranked List Similarity (RLS)

Similarity between the top-k most similar tags of ta and tb. Motivated by Fagin et
al. [35], we compute the similarity between two ranked lists by taking the mean over
the intersection of both lists at different cutoffs. Let τk

a and τk
b be two partially ranked

lists of tags, where τ(i) ∈ T and k is the length of the lists. We define the RLS as:

RLS(τk
a , τk

b ) =
∑k

i=1 |τ i
a ∩ τ i

b |/i

k
(9.9)

We compute the RLS on three different top-100 lists:

RLSCP τk
a consists of the k tags with largest conditional probability P (tx|ta), with

k = 100.

RLSCPR τk
a consists of the k tags with largest conditional probability P (ta|tx), with

k = 100 and |U(tx)| > 0.01 × |U(ta)|.
RLSCS τk

a consists of the k tags with largest cosine similarity CS(tx, ta), with k = 100.

9.3.3 KL-divergence (KLD)

The KL-Divergence between two probability distributions P and Q of a discrete ran-
dom variable is commonly defined as:

DKL(P ||Q) =
∑

i

P (i) log
P (i)
Q(i)

(9.10)

To obtain a symmetrical distance measure, we use the sum of both asymmetric com-
putations, as proposed by Kullback and Leibler [71]:

DKL(P, Q) = DKL(P ||Q) + DKL(Q||P ) (9.11)

We compute the KL-Divergence on the top-100 conditional probabilities P (tx|ta)
of both input tags. We create the probability distributions by first inserting an epsilon
value of 10−8 where tx occurs in the top-100 of ta but not in the top-100 of tb (or vise
versa) and then normalize the distributions to sum to one. Weinberger et al. used the
KL-Divergence to find the tags in Flickr that give the optimal disambiguation of the
query [138].

9.3.4 Sub-Super Sum (SSS)

The Sub-Super method is the only specificity method that takes both tags into account.
Therefore it contains both a specificity component and a relatedness component. If
two tags are very similar, they will also have similar subsets, in this case the sub-super
relation will be high, independent of the order of the tags.

We use the sum of both sub-super relations as similarity measure:

SSS(ta, tb) = SS(ta||tb) + SS(tb||ta) (9.12)
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Figure 9.3: The occurrence frequency of the tags 2005, 2006, 2007 and 2008. Each point
shows the mean frequency over 10,000 photos sampled at 1000 equally spaced points in
the chronologically ordered dataset.

9.4 Experimental Setup

For the analysis in this chapter we use a large collection of Flickr photo annotations.
The collection contains tag annotations of publicly available photos uploaded to Flickr
any time before early 2008. In order to give an indication of the scale of the collec-
tion, it contains annotations of hundreds of millions of photos (108), billions of tag
assignments (109), and millions of unique tag strings (106).

Photo annotations are an appropriate corpus for our purpose since they are known
to contain various types of tags. Naaman et al. identify 3 main types of photo annota-
tions: place, activity, and depictions [91]. Overell et al. provide a more fine grained
analysis of Flickr tag classes [98]. They report that about 20% refer to locations; 15%
to artifacts or objects; 16% to people or organization, 4% to actions and events; and
7% to time. As an example of the last class Figure 9.3 shows the occurrence of the
year tags in our dataset.

9.4.1 Sampling of Tag Pairs

This work attempts to establish the nature of the relation between two tags. For this
task, pairs of tags are only useful if there is at least some sort of relation between
them. All tags that have a low co-occurrence can be assumed to be unrelated as they
are never used to describe the same concept. Therefore, we only select pairs of tags
that have a high co-occurrence.

We select tag pairs by first drawing a random tag ta from the full distribution
of tag occurrences, giving a higher probability to frequently occurring tags. For this
tag, we now draw a tag tb randomly from the top-10 probabilities conditioned on ta:
P (tb|ta). We also draw a tag tc from the top-10 joint probabilities P (ta, tc) and td from
the top-10 tags that give the highest probability of drawing ta: P (ta|td).

In the top of P (ta|td) many obscure tags occur, because if a tag td is used only once
in the entire collection and it happens to co-occur with ta the probability P (ta|td) will
be one. We ensure that td is known to many users by selecting only tags that satisfy
the criterion |U(td)| > 0.01 × |U(ta)|.
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Figure 9.4: Assessment class distribution for all 8 human judges.

The tag pairs {ta, tb},{ta, tc},{ta, td} are added to our test collection. This proce-
dure is repeated 1200 times, resulting in 3600 tag pairs. After removal of doubles
and non Latin tags we retain 3112 tag pairs for our evaluation.

9.4.2 Manual Assessments

To classify the selected tag pairs we have used an interface that allowed users to assign
the tags to any of the classes:

• C1: A == B, A is equally specific as B

• C2: A > B, A is more general than B

• C3: A < B, A is more specific than B

• C4: A != B, A is incomparable to B

• C5: A ? B, I cannot judge these tags

For each assessment we presented a random tag pair in random order to the assessor
and asked the user to assign it to any of the 5 classes. We explicitly asked the assessors
to only classify a tag pair into one of the classes C1-3 if the tags can be ordered in
the same domain. For example, although sushi might be a more specific concept
than japan there is no clear hierarchical specificity relation between them, whereas
sushi and food can be unambiguously ranked. With this interface we have collected
assessments from eight different human judges for all 3112 tag pairs. The assessments
are distributed over the classes as follows:

C1 C2 C3 C4 C5
326 346 319 1559 562

Clearly, most of the pairs are assigned to the class incomparable (C4), although
they all have a high co-occurrence. Many of these tags are composite tags like las and
vegas, others just do not have a clear specificity relation, like color and art. Figure 9.4
shows the class distribution per assessor, where the mean Pearson correlation between
the assessor distributions is 0.87. Section 9.4.3 will give a more elaborate discussion
on the agreement between the eight assessors.

In all further experiments we neglect the pairs in C5.
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Figure 9.5: The agreement between two assessors on the 708 doubly assessed tag pairs.

9.4.3 Assessor Agreement

To compute the agreement between our assessors we have collected double assess-
ments for 708 of the tag pairs. For each of these tag pairs we asked a randomly
chosen assessor, different from the initial assessor, to classify the tag pair. We find
that the average agreement between assessors is 0.83.

The confusion between classes can be seen in Figure 9.5. When we ignore C5,
clearly most of the disagreement occurs when one of the assessors does not consider
the two tags to be semantically related (and therefore classifies it into C4) and the
other assessor does. This judgement was often difficult because the selection process
caused all tag pairs to be related in a certain way.

The four confusions between C2 and C3 are:

2008 vs. feb
crater vs. volcano

venice vs. carnevale
2006 vs. november

These confusions can be explained as {feb, crater, carnevale, november} occurs in
{2008, volcano, venice, 2006}, but also in other places/times; Therefore, both tags can
be seen as the most specific one. This type of confusion corresponds to the examples
{halloween, costumes} and {wedding, ceremony} we will see in Figure 9.7.

The confusion between C1 and either C2 or C3 mostly arises with singular vs. plural
tags. Some assessors have labeled the plural tags as ‘more general’ while others have
considered them equally specific.

9.5 Results

We use the implementation of a linear SVM classifier by Joachims [64]. For all clas-
sifiers the presented results are based on 10-fold cross validation, where 90% of the
tag pairs are used as training data and 10% as test data. All features are normalized
by subtracting the mean and dividing by the variance.
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Figure 9.6: Boxplot of the 10-fold cross validation results on the specificity ranking task
for individual features and various feature sets. The test error indicates the fraction of
incorrectly ranked tag pairs.

The classification is executed in 3 steps. First we optimise a ranking classifier to
order ta and tb given that they are part of C2 or C3. Based on the optimal specificity
classifier and similarity features we then classify the tag pairs that are considered
equally specific (C1). Finally, we optimize a classifier to separate the classes C1-3 and
C4.

For these three classifiers we primarily focus on the relative performance of the
proposed features, and pay less attention to the absolute performance of the final
classifier.

9.5.1 Specificity Ranking

We start by only considering the tag pairs assessed as C2 or C3. Since these two classes
are symmetric (if ta > tb then tb < ta), we treat the specificity ordering of two tags
as a ranking problem on a list of size 2. We implement this task as a linear classifier
with an unbiased hyperplane (decision boundary through the origin of the feature
space). To get a set of features that describes the relation between two terms, we use
the difference between the individual feature values of the two tags as input for the
classifier (e.g. ΔDF (ta, tb) = DF (ta) − DF (tb)). For sub-super we use the difference
between both directional computations (ΔSS(ta, tb) = SS(ta||tb) − SS(tb||ta)).

In Figure 9.6 we show a boxplot of the classification error of ten-fold cross-
validation for the five individual features and for the best combinations of features.
Both the clarity score and the sub-super method individually outperform the docu-
ment frequency (See also Table 9.2).

For the combined feature classifiers we only show the optimal combinations for
each number of features (F2-F5). The best individual features also give the best
combination of two (F2 = CL + SS). With only three features the best classification
result is obtained (F3 = EN + CL + SS). This classifier gives an error rate decrease
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Table 9.2: Specificity ranking. The mean (μ) and standard deviation (σ) of the test error
using 10-fold cross validation. The optimal result is obtained with F3 (EN+CL+SS).

Feat. DF VC EN CL SS

μ 0.182 0.214 0.226 0.174 0.174
σ 0.041 0.045 0.030 0.032 0.039

Feat. F2 F3 F4 F5

μ 0.141 0.132 0.134 0.134
σ 0.032 0.029 0.026 0.026

of 27.4% over using document frequency alone. We further find that the proposed
sub-super method gives the best individual performance and is part of each optimal
feature set.

The weights of the optimal classifier are [EN:0.52, CL:-0.53, SS:-0.42] which
shows that the three features have almost equal contribution in the final classifier.
SS and CL have a negative weight, because they have an inverted relation to speci-
ficity (e.g. CL(ta) > CL(tb) ⇒ ta < tb).

Figure 9.7 shows the predicted relations for a subset of our training pairs. The
left graph based on document frequency shows that more general concepts like party
or fun occur less frequently than a more focused description like wedding, therefore a
document frequency based ranking will fail to correctly rank these tags. The optimal
classifier ranks the general terms party and fun above the more specific event names.
The ordering of (wedding, ceremony) and (halloween, costumes) are still debatable,
but they are identical for both classifiers.

9.5.2 Finding Similar Terms

Tag pairs that are equally specific (C1) can be detected using both specificity and
similarity features. We use the absolute difference of the specificity features as input

halloween

costumes fun

boogie

wedding

party groom bride ceremony

xmas birthday

christmastree

halloween

costumes

fun

boogiebirthday

party

wedding xmas

groom bride ceremony christmastree

Figure 9.7: Specificity relations computed for a subset of our training set. The left graph
is based on DF alone. The right graph is based on the optimal specificity classifier (F3).
An edge between two tags only exists if the tag pair was judged by a human assessor
(missing edges are not due to the method). The size of the arrow is proportional to the
classification certainty (distance to classifier boundary). The absolute position in the graph
does not carry any information.
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Figure 9.8: F-Measure for increasing (j), which represents the relative weight of the pos-
itive class (C1) compared to the negative class (C2+C3). F1: the optimal co-occurrence
features, F2: the optimal context features, F3: the optimal specificity features, F4: the
optimal set from all features.

for the similarity classifier (e.g. ΔDF (ta, tb) = |DF (ta) − DF (tb)|).
The performance of the classifier is evaluated using the F-measure, which is de-

fined as the harmonic mean of precision and recall. In this experiment the positive
class is given by C1 and the combination of C2 and C3 constitutes the negative class.
Because of the large sample size difference between the two classes (326 vs. 665), we
use a cost-factor j proposed by Morik et al. [90] to set the weight of test errors on
positive examples versus errors on negative examples. The classes appear to be hard
to separate as almost all samples end up in the negative class when j = 1. In this case
the precision will be 0, resulting in an F-Measure of 0. For very large j all test pairs will
be in the positive class giving an F-Measure of (2∗1∗326/991)/(1+326/991) = 0.495.

The results for four different feature sets are plotted in Figure 9.8. The tag pairs
in our study are all selected based on high co-occurrence, therefore the co-occurrence
features (F1) do not have any positive influence on the classification. The similarity
features that take the tag context into account can give some improvement to find
more similar tags (F2, optimal at j = 2.2, F = 0.542). The ten most similar tags ac-
cording to the similarity classifier (Also indicated on the horizontal axis in Figure 9.9),
and the actual classification given by the assessor are:

fraktal == fraktals
rainbows == storms
matt == matthew
blanc == noir
beautiful == pretty

pretty == gorgeous
747 == 737
rust < steel
recreation == leisure
actress < celebrity
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Figure 9.9: Scatterplot of the classes C1, C2 and C3. The y-axis shows the distance
to the classification boundary of the optimal specificity classifier. The x-axis shows the
optimal similarity classifier without specificity features.

We further note that the specificity features (F3, optimal at j = 2.0, F = 0.566)
outperform the set of best similarity features. This corresponds to the set-up of our
experiments as we defined the class == as ‘equally specific’.

Figure 9.9 shows a scatter plot of classes C1-3 on the optimal specificity and simi-
larity classifier. As shown before, C2 and C3 are well separable using the 3 specificity
features. As expected C1 lies between the other two classes on the specificity axis
and more to the right on the similarity axis. This indicates that both sets of features
can be combined in a single similarity classifier. The combined feature set (F4 in Fig-
ure 9.8) shows that a combination of specificity and similarity features gives the best
performance over a large range of values for j (F4, optimal at j = 2.0 , F = 0.583).

The results in this section indicate that similarity metrics that take the context of
the tags into account outperform the commonly used co-occurrence features on the
detection of tags with a similar semantic specificity.

9.5.3 Remove Incomparable

Even though all selected tag pairs should somehow be related (due to the nature of
the selection process), the assessors have assigned many tags to the incomparable
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Figure 9.10: F-Measure for increasing settings of j for classification of comparable and
incomparable terms. F1 contains the optimal set of co-occurrence features, F2 contains
the optimal context features, F3 contains the combined feature sets.

class (C4) (about 56% more than C1-3 combined). We train a classifier to separate
the comparable (C1-3) from the incomparable (C4) tag pairs. In Figure 9.10 the F-
Measure is plotted against j for several feature sets, where j is the relative weight
of C1-3 compared to C4. Again it is clear that co-occurrence features do not have
much effect on the separation of the two classes. The optimal set of context features
(RLSCP, KLD and SSS) give a large improvement over a big range of values for j.
However, the optimal point j = 2.2 (with precision = 0.55 and recall = 0.75) is not
good enough to directly use this method as a selection for specifically related terms.
Additional work needs to be conducted to select the tags that can unambiguously be
ordered in a network of tag with pairwise specificity relationships.

9.6 Example Applications

A network of tags with pairwise specificity relationships, like the one described in
this chapter has various applications. In this section we will describe two use-cases.
First, we will show that the notion of specificity can be used to improve search quality
for web or image search. Second, we will discuss its application to interactive query
refinement. The application of the tag specificity network is not limited to these
examples but can potentially be used in more applications.

9.6.1 Term Weight Estimation

To optimise search results it is important to know which of the terms in a multi-term
query is most representative for the user’s information need. Inverse document fre-
quency is commonly used as a weighing mechanism to increase the influence of less
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common query terms. Although the exact relation is debatable, it is commonly ac-
cepted that the inverse document frequency is related to the amount of information
carried by a term [107]. We define semantic term specificity as a collection indepen-
dent notion of information content. As our classifier gives a better estimation of term
specificity it is a better method to weigh the terms in a query.

To evaluate which term is most representative for the full query information, we
propose to use the web as an independent test collection, and use six different com-
mercial search engines for both image and text search to validate the specificity pre-
diction of our classifier. Our analysis is based on the assumption that two queries with
similar information need will return a similar set of documents. This assumption was
shown to be useful by the work of Yomtov et al. who used search engine results to
estimate query difficulty [143].

We use the 665 tag pairs that have been manually assigned to class C2 or C3 as
queries. For these queries we compare the result list of the full query consisting of
both terms Qb to the results of one of the individual terms, where the query created
by the predicted specific term is denoted as Qs and the query consisting of the general
term Qg. The set of top-100 search results for a given query Q is denoted as R(Q).
We now compare the number of overlapping results between the full query and the
predicted specific term (Os = |R(Qb) ∩ R(Qs)|) to the number of overlapping results
between the full query and the predicted general term (Og = |R(Qb) ∩ R(Qg)|).

Using the optimal specificity classifier, the results returned by the most specific
term should be more similar to the full query results than the results based on the
general term and thus: Os > Og.

Table 9.3 gives the results for the baseline classifier (based on DF alone) and our
optimal classifier (F3, based on EN + CL + SS). The reported values are: F/T: The
number of incorrect classifications (Os < Og) vs. the number of correct classifications
(Os > Og). Os and Og: the average values of Os and Og over all queries.

Our classifier gives a better prediction of the most specific term for all deployed
search methods. This means that using the classifier, we can give a better prediction of
term importance in a two-term query, which can result in improved user satisfaction.

Because the commercial search engines have a black box ranking algorithm, we
validate the presented results on a public data set using a common ranking algorithm.
We used the wt10g TREC Web Corpus and the Lemur implementation of the Inquery

Table 9.3: Search result overlap for the DF and F3 classifier on 6 public search engines
and the TREC collection.

DF F3

F/T Os Og F/T Os Og

Bing Web 96/471 13.34 2.14 83/484 13.60 1.87
Google Web 80/420 3.88 0.74 62/438 4.00 0.61
Yahoo! Web 97/477 10.02 2.26 80/494 10.33 1.95
TREC wt10g 115/293 32.26 18.72 109/299 32.42 18.56

Bing Image 80/394 8.23 1.01 66/408 8.28 0.97
Google Image 46/336 2.13 0.33 42/340 2.15 0.32
Yahoo! Image 38/321 3.31 0.24 23/336 3.36 0.18
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retrieval model [14], with boolean AND operator and default parameters. The results
on this collection support our findings that the F3 classifier outperforms DF on the
prediction of specificity (See Table 9.3).

Next to the classification difference between DF and F3 we observe an interesting
difference between the search engine response. In web search the average result list
overlap is notably smaller for Google’s search engine than for the other two. This
could indicate that Google has a larger index but recent measurements show that
Yahoo! has a larger index for web search4. Apparently Google has a significantly dif-
ferent method to deal with 2-term queries resulting in more diversification of search
results. Looking at the image search results, we find that Yahoo! gives almost equally
diverse results as Google, while Bing again shows a relatively large result overlap.

9.6.2 Interactive Query Refinement

Another application for a tag specificity network could be tag-based browsing tools
like TagExplorer5, which currently allows users to browse Flickr by showing related
tags, grouped by concept (e.g. places, times, names, activities). The notion of speci-
ficity could extend the browsing interface of tag-explorer by giving the user the option
to browse for more specific, similar or more general terms.

As an example, for the given query wedding, the tool currently offers the users the
query refinement terms party, groom, and bride without indicating the effect of the
refinement. Using the method proposed in this chapter the system could offer more
intelligent support to the user by saying: do you want to narrow your search to the
more specific topics wedding bride or wedding groom?; or do you want to explore the
more general topic party?

9.7 Conclusions

In this work we have compared new and previously proposed methods to determine
the specificity relation between two terms. The relative specificity of terms can be
used to improve term weighting in a query. Also, we show that term specificity detec-
tion can be used to construct term ontologies and in an interactive browsing session
the notion of specificity could allow the user to explore a more specific or more gen-
eral concept.

We define three types of relationships that span the spectrum of relations that can
be defined between two terms, i.e. the terms can be (1) incomparable, (2) of similar
specificity, or (3) one term is more or less specific than the other. Using the Flickr tag
corpus and a set of manually classified tag pairs we have evaluated the effectiveness of
individually proposed metrics described in prior work in an SVM classifier. The clarity
score and the proposed sub-super method both individually outperform a ranking on
document frequency. Also, because the compared features are not strongly correlated,
the combined classifier based on three features can improve the specificity classifica-
tion significantly over all individual features. We even reach a 27.4% decrease in error
rate over the traditionally used document frequency.

4http://www.worldwidewebsize.com/
5http://tagexplorer.sandbox.yahoo.com
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We have shown that the detection of equally specific tags benefits from both speci-
ficity and similarity features. Because of the selection procedure of the evaluated tag
pairs, we have only evaluated our classifier on tags with a high co-occurrence. All the
tag pairs are therefore somehow related. We have shown that using context features
instead of simple co-occurrence methods improves the selection of comparable tag
pairs from those which are frequently used together.

We have introduced the sub-super method which contains both a specificity and
similarity component. The difference in directed sub-super scores gives an indication
of specificity difference, while the sum of both directed sub-super scores indicates if
the two tags are similar. This method outperformed the previously proposed mea-
sures on specificity ranking and was included in the optimal feature set for all three
classification tasks. Because this method takes both input tags into account instead
of computing a global specificity score for each individual tag, this method is able to
give a better estimation of the relation between both tags.

We have shown that an improved notion of specificity can be applied to estimate
the weight of query terms in web and image search, and we propose useful applica-
tions to interactive browsing interfaces.

Appendix

Features that were included in our experimental evaluation, but did not improve per-
formance in the final classifiers or give any other interesting insights:

Specificity

User-Image fraction (UI) It appears that the specificity of tags that describe an area
or time fragment can be determined by the fraction:

UI(ta) = |U(ta)|/|I(ta)| (9.13)

This can be explained by the use of the ‘batch annotation’ function in Flickr. If some-
one has been on holiday in France in 2007, he could use this function to annotate all
the photos made during the trip with both these tags. If some people use this function
on large sets of photos, this will result in a small UI ratio for big countries or large
time spans.

KL-Divergence The KL-Divergence is proposed as a directed measure. If one of the
tags (ta) is a subset of the other (tb) one might expect that DKL(ta||tb) < DKL(tb||ta);
Because all the tags co-occurring with ta also co-occur with tb, but not the other way
around. This relation however did not prove to be strong enough to improve the
classifier.

Sampled entropy The entropy based on a sample of 1000 images. This feature
appeared to be strongly correlated to the vocabulary growth. The computation of
the entropy (Eq. 9.2) depends on the absolute number of co-occurring tags (vocabu-
lary size) and the co-occurrence frequency. The variation in co-occurrence frequency
distribution between different tags seems to be very small, therefore the main com-
ponent in the entropy computation is the vocabulary size.
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Co-occurring The absolute number of unique tags that co-occur with ta. This fea-
ture actually performed slightly better than DF individually, but did not improve the
final classifier.

Annotation overlap frequency The average overlap between the annotations that
contain ta. We repeatedly draw two images from I(ta) and compute the fraction of
the tags that overlap in the annotation of the two images. A more specific tag will be
more likely to co-occur frequently with a small set of other tags.

Similarity

KLD10/50 The KL-Divergence based on the top 10 or 50 conditional probabilities
appeared to perform slightly less than the top 100.



10
Detecting Synonyms in Social Tagging Systems

to Improve Content Retrieval

Collaborative tagging used in online social content systems is naturally char-
acterized by many synonyms, causing low precision retrieval. We propose a
mechanism based on user preference profiles to identify synonyms that can be
used to retrieve more relevant documents by expanding the user’s query. Using
a popular online book catalog we discuss the effectiveness of our method over
usual similarity based expansion methods.

This chapter is an extended version of: Maarten Clements, Arjen P. de Vries, and Marcel J. T.
Reinders. Detecting Synonyms in Social Tagging Systems to Improve Content Retrieval. In
SIGIR 08: Proceedings of the 31st annual international ACM SIGIR conference on Research and
development in information retrieval, pages 739-740, New York, NY, USA, 2008. ACM.
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10.1 Introduction

Social networks have become popular platforms to share and retrieve multimedia
content. To enable the retrieval of the unstructured data in these social content sys-
tems, collaborative tagging has shown to be an effective annotation mechanism. Many
systems allow people to attach the terms they consider relevant for the content and
tag-clouds are used to retrieve items introduced by others.

One of the problems in tagging systems is the fact that people use different terms
to describe the content, resulting in low retrieval performance. Begelman et al. pro-
posed to cluster the tags, in order to expand the users’ queries with semantically
related tags [8]. Other work has investigated the possibility to suggest tags to people
when they have to annotate content, in order to increase the coherence of the folk-
sonomy [141]. Tag suggestions induce the problem that new users can issue wrong
queries, as they are not aware of the tagging policy in the network. Furnas et al. al-
ready advocated in 1987 that the optimal system would aggregate as many different
descriptions as possible [40]. In this work, we show that similarity based clustering
methods might be too rigorous in grouping terms and we propose a new method to
identify true synonyms in social content systems. Our method does not enforce a
certain tagging policy on users, but uses the naturally emerging structure to identify
synonyms that can be used to expand the initial query.

10.2 Synonym Detection

To explain our synonym detection method we follow the example shown in Fig-
ure 10.1. A frequently used tag in many social content systems is the term humour.
This term is however written differently in US-English (humor, also German and Span-
ish) and UK-English (humour, also French).

We postulate that synonyms are terms that are applied frequently on the same
content, but are used by different user groups. Because people often prefer one of

Query (tq)
‘Humour’ 

Synonym (ts)
‘Humor’ 

British
people 

American
people 

Relevant 
Content 

Figure 10.1: As an example of two synonyms we use the British ‘humour’ and the Ameri-
can ‘humor’. True synonyms are applied to the same content set, while users often prefer
one of the two terms.
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Figure 10.2: Synonyms are characterised by a large item similarity and a negative user
similarity.

the synonyms (especially in language differences), different groups will emerge. We
integrate these two characteristics in our model to identify synonymous terms.

The ternary relations in collaborative tagging systems can be visualized in a 3D
matrix, see Figure 10.2. To derive binary tag relations, we compute the sum over the
user and item dimensions of D and obtain:

• User-Tag matrix: UT(uk, tm) =
∑l=L

l=1 D(uk, il, tm), indicating how many items
each user tagged with which tag. A column from this matrix is referred to as a
tag’s user profile, containing a distribution of the most prominent tag users.

• Item-Tag matrix: IT(il, tm) =
∑k=K

k=1 D(uk, il, tm), indicating how many users
tagged each item with which tag. A column from this matrix is referred to as
a tag’s item profile, containing a distribution of the most relevant items to that
tag.

Based on these two binary relations, we can derive the similarity between two
tags based on user or item overlap. The item similarity between two tags (SI(tq, ts))
is derived by computing the Pearson correlation between the two profiles as follows:

SI(tq, ts) = ρ(ITq, ITs) =

∑
l∈L

(ITl,q − μITq)(ITl,s − μITs)

σITqσITs

where tq is the query tag, ts is the potential synonym, ITl,q is the abbreviation of
IT(il, tq). The user similarity between two tags (SU (tq, ts)) is computed analogously.

Our method first finds all terms that have an item similarity larger than 0.5
(SI(tq, ts) ≥ 0.5). On these similar terms, we compute the user similarity and re-
tain all terms with a negative correlation as synonyms (SU (tq, ts) < 0).
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Figure 10.3: A scatter plot of the user and item similarity of all tags compared to ‘Humour’.
The size of the bubbles indicates the percentage of items that was given that tag at least
once. The dotted lines show the manually defined classification rules.

10.3 LibraryThing

LibraryThing1 is an online web service that allows users to create a tagged catalog
of the books they own or have read. The popularity of the system has resulted in a
database that contains almost 3 million unique works, collaboratively added by more
than 300,000 users.

We have collected a trace from the LibraryThing network, containing 25,295 ac-
tively tagging users2. After pruning this data set we retain 7279 users that have all
supplied tags to at least 20 books. We remove books and tags that occur in fewer
than 5 user profiles, resulting in 37,232 unique works and 10,559 unique tags. This
pruned data set contains 2,056,487 UIT relations, resulting in a density of 7.2 ∗ 10−7

(fraction of non empty cells in D). The derived UT and IT matrices have a density
of respectively: 5.2 · 10−3 and 2.0 · 10−3.

10.4 Results

We use two examples to demonstrate the effect or our model. First we look at the
query tag Humour, used on 2527 items in our data set. All similarities with the other
tags in the data are scattered in Figure 10.2. The tags that we consider to be synonyms

1http://www.librarything.com
2Crawled in July 2007
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Figure 10.4: A scatter plot of the user and item similarity of all tags compared to ‘Classic’.

are shown in a green font, and clearly show a negative relation with user similarity.
Table 10.1 shows the tags that have both SI(tq, ts) ≥ 0.5 and SU (tq, ts) < 0, ‘Items’
indicates the amount of items it was used on and ‘New’ is the number of items not
annotated by the query tag.

We see that the American form humor has a strong item correlation and a clearly
negative user correlation (even the smallest user correlation in the entire data set).
Only one of the terms is a truly incorrect result, the tag discworld series. If we use
all proposed synonyms to enrich the initial query, we retrieve 3162 true positives and
only 1 false positive.

If we would have ranked similar tags only on item similarity, the top-5 would
contain the terms pratchett,terry pratchett and discworld, all related to the same book
series. The Discworld series are generally regarded as humorous books, however we
do not want to enforce them on people searching for the much more general term
humour.

Table 10.1: Query: Humour (Items: 2527)

Proposed synonym Si Su Items New

humor 0.7829 -0.0356 4323 2511
funny 0.5738 -0.0091 1209 510
humorous 0.6144 -0.0065 364 132
british humor 0.5614 -0.0057 99 9
discworld series 0.6031 -0.0035 36 1
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Table 10.2: Query: Classic (Items: 2872)

Proposed synonym Si Su Items New

classics 0.9407 -0.043 2094 824
classic literature 0.8742 -0.0164 494 72
19th century literature 0.5811 -0.0112 162 24
classic lit 0.6584 -0.0089 132 18
bbc big read 0.5162 -0.0066 53 6
assigned 0.5253 -0.0049 70 11
classic fiction 0.8288 -0.0048 430 60

The second example we discuss is the general tag classic. Figure 10.4 shows the
scatter plot of all similarities and Table 10.2 contains the tags that qualify our syn-
onym criterion. Most tags in the table are true synonyms. The term 19th century
literature is not synonymous, however most 19th century books that are still popular
are considered classics. Only the tag assigned truly introduces wrong results, this term
is only used on 70 books which makes the negative effect of this tag very limited

The item similarity between classic and literature is very high (SI(tq, ts) = 0.85),
therefore a clustering scheme based on content similarity alone could easily group
these terms together. However, these terms have a positive user similarity (SU (tq, ts) =
0.06), so our method correctly identifies that they are no synonyms. The exploitation
of information about user groups allows our model to distinguish between frequently
co-occurring terms and true synonyms.



Part V

The road ahead





11
Discussion and Conclusion

11.1 Contributions

In this thesis, we have studied many personalised retrieval tasks to improve the un-
derstanding of collaborative annotation phenomena. The presented work has investi-
gated whether and how collaborative annotation corpora can be used to improve per-
sonalised data access in social media. Seemingly similar personalisation tasks strongly
depend on variations in exact task definition, system design and data characteristics.

We have studied the tasks of item, tag or user recommendation from different
viewpoints. The most common recommendation task in literature is focused on rating
prediction for a given user and item. This task is often approached with memory based
collaborative filtering and dimensionality reduction techniques. We have shown that
if only a limited number of user profiles can be stored, the recommender should
base its decisions on users with many ratings instead of just the top most similar
users. If item recommendation is approached as a content ranking task, graph based
methods perform much better. These methods can however not deal with the negative
relevance indications contributed by the users’ low ratings. We propose a combination
of two separate graphs to overcome this limitation and showed that low ratings can
have a positive contribution in the ranking of appreciated content.

To add more contextual information, the user-item graph can be extended with
tags. Because tags indicate the specific aspects that relate certain items or users this
tripartite graph can improve item recommendation or the recommendation of new
social relations. The dynamics of this graph however strongly depend on the tagging
rights in the system and whether the system assists the users in choosing their tags. If
a system suggests tags previously used by others, users choose exactly the same tag if
they agree on the content description, or they decide to add a new tag if they consider
the tag suggestions incomplete or incorrect. In this way, there is a larger agreement
on the description of the content compared to a system without tag suggestions.

We have proposed the task of recommending locations in a previously unvisited
region, based on geotags. This task differs from traditional recommendation, as the
objects of interest are continuously valued data points. In a continuous object space,
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traditional recommender techniques will not be able to find any similarities, because
no two objects are identical. The scale at which the data is observed determines
which geotags are related to the same object. Using a scale-space based on a Gaus-
sian density estimation of the data we have been able to evaluate different location
recommendation tasks at various scales. We have shown that many users have mixed
location preferences, making an item-based approach more effective than a user-
based approach. For location recommendation it appears to be harder to improve
over the popularity baseline than on traditional movie, music or book data sets. This
can be explained because almost all users enjoy the most popular landmarks in a city,
while the most popular movies are still highly debated. The findings on location rec-
ommendation show that the characteristics of the target objects strongly determine
which retrieval models can be effective for personalised recommendations.

Recommendation and search are two highly related topics. Personalised search is
the task to predict a ranking of items based on both a query and the user’s history.
In this thesis we have used the tags assigned by users as possible queries. Hereby we
assume that tags and queries are generated by the same process when a user makes
a conceptual model of the content. Tags and queries are thus described by the same
language model, which is a common assumption when queries and documents are
concerned in information retrieval.

If a tagging system is designed in such a way that only the contributer of the
content is allowed to add tags to that item, annotations will be too sparse to allow
effective data access. The retrieval model needs to apply a smoothing method that
integrates latent semantic relations to other tags. When the user however increases
the length of his query, the need for personalisation and smoothing disappears, as
longer queries are less ambiguous. By investigating the pairwise relation between
terms we have been able to improve the understanding of multiple term queries. An
improved understanding of tag semantics has many applications in both search and
browsing interfaces.

11.2 Data Driven Approach

Information retrieval and recommender system research is often focused on the op-
timisation of the retrieval system for a specific data set. Data corpora like the ones
provided by the TREC1 initiative and the Netflix2 competition have great value for
scientific research, but the focus should not solely be on the optimisation of retrieval
performance on these collections. A highly parametric method can always be tuned
to achieve the optimal ranking performance, this does however only have scientific
value if the parameters can still be related to real world phenomena.

In this thesis we have taken a data driven approach to analyse the retrieval effec-
tiveness in social media. The optimisation of the model parameters has not been the
final goal, but a means to learn about the data and understand the collaborative an-
notation phenomena. By repeatedly reformulating the retrieval tasks and evaluation
criteria we have been able to reveal interesting parameter differences that explain the

1http://trec.nist.gov
2http://www.netflixprize.com/
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user incentives that underly the data. Predefined ontologies will not be able to cap-
ture subtle differences in the way these data sources are created. A common believe
is that once enough data is present, the optimal model can be derived from the data
itself [48]. The abundance of the data contributed by the collaboration of many users
enables accurate parameter estimation of data driven methods.

We have substantiated the belief that effective ranking methods should explicitly
exploit the graph structure of the data [6; 92]. Graph ranking methods do not only
take the direct relation between entities into account but also include the indirect
relations determined by the paths over different entities. These graph methods are
also versatile enough to integrate data with different characteristics and can therefore
deal with the dynamic nature of social media.

11.3 Open Issues

Privacy In social media, a large part of the contributed data or interactions with
data contain privacy sensitive information. In this work we have left the issue of
privacy completely in the hands of the user. All the annotations contributed by the
users are directly used in the retrieval algorithms, making personal data accessible for
the system owner or even other users. If all privacy sensitive information would be
kept away from the retrieval system, many interesting data mining applications will
be missed. Even when a user contributes private information it should be possible to
exploit this information for personalisation and retrieval purposes. Recent work has
shown that many simple mathematic operations can be executed in the encrypted do-
main, so that recommendations can be made without revealing the data [34]. Further
development of these methods would even make it possible to suggest medication to
patients because it worked on other people with similar symptoms, without revealing
all files to the medical practitioner.

Rights Only a few years ago, most of the photos and videos online were made of
celebrities. The question of privacy and rights was often ignored because these people
had made an informed decision to become famous. Now everyone has the experience
that information about their personal life is published by friends or relatives. Al-
though many platforms allow the specification of many degrees of creative commons
rights, this decision is left to the contributer of the content, without consulting the
people that actually appear in the content. Many users feel that it should be made
easier to manage your own contributions and determine who can access and use the
content. In this thesis we have not used any methods that exploit the actual content
and therefore we have not touched this issue. The combination of tagging and face
detection or recognition has however shown to be an effective combination to anno-
tate people in photos3 and tags from social media can even be used to improve the
facial recognition system4. In this way, the collaborative tagging effort can contribute
to the annotation of all people appearing in the content and therefore help users to
locate all the content that concerns them.

3http://face.com/
4http://www.polarrose.com/
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Scalability Personalisation requires different computations for each individual. In
standard collaborative filtering problems the item-based approach has shown to scale
better than the user-based approach. The item-based approach allows for offline
computation of the item similarity model and therefore the online computation scales
independently of the number of customers and number of items in the product cata-
log [79]. The location recommender that was proposed in Chapter 8 is based on the
same principle of item similarity and is therefore applicable to large data sets.

The personalised random walk that was used in this thesis is an expensive proce-
dure if it has to be evaluated for each query by each user. Computing all similarities
offline would however require a storage capacity of (|U | + |I| + |T |)2. As most tasks
will only require the most relevant entities to a certain query a large part of all similar-
ities are irrelevant. Dependent on the available space, the system could be designed
to only store the top-N similarities of each entity and update these similarities offline.

Scattered Data Driven by the value of user data for personalised advertisements,
the main battle between social media sites is focused on collecting and exploiting as
much data as possible. These companies are therefore reluctant to share the informa-
tion with others and even have conflicts with their users on the ownership of the data.
As a result, all the user contributed data is currently scattered over many platforms.
For most accurate personalisation, all user data on the Internet should however be ag-
gregated into a single model. One initiative to aggregate data is Facebook’s recently
released open graph concept5. This protocol allows them to gain access to preference
indications given by users on content on completely different domains. These and
similar efforts will continue to drive the battle for data in the coming years. Because
Internet users are increasingly aware of the possibilities created by extensive data
mining on their personal data, only systems that adequately engage their community
in the process of setting rights will be able to sustain their expansion.

11.4 Future Prospect

It will not be long before all locations and interactions between people can be stored
and made available online, so that at any time and place real-time information will be
available about a user’s surroundings, including both objects [146] and people [18].
Data filtering methods need to be able to deal with these vast amounts of data and
find patterns in the information obtained though many different channels.

Context based filtering methods relying on the current time, place, social company
or even bodily functions are being developed to accurately assist the user. Because
of the size and dynamic nature of this data, we believe that data driven approaches
will be most versatile to deal with this information. Especially graph algorithms are
repeatedly proving their value in the ranking of organically created data structures.

Complete knowledge about the current and past states of the user is the key to
providing accurate information in real time. The development of sensor technology
like GPS and Near Field Communication will stimulate the measurement of the full

5http://opengraphprotocol.org/
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user context. Currently much research is also focused on brain-computer interaction
to replace traditional queries by thought. Direct neural interfaces that can understand
signals emerging from the brain will allow people to control the information filtering
process by thought. Whether detailed cognitive information models can ever be un-
derstood from brain measurements is still a mystery, but simple tasks can already be
accomplished in this manner [100; 89].

Once the context of the user can accurately be modeled, advertisement, recom-
mendation and search will converge to a single information channel as they all have
the same goal: match the right information to the user at the right time. Driven by
someone’s previous interactions or experiences of peers in a similar situation the sys-
tem has to estimate the the user’s current information need, whether it is a product
or general knowledge. Therefore it will be vital for product or information selling
companies to engage the community in their marketing strategy.

How these developments will be received by the community is hard to predict.
The difference in adoption of new technology between, but also within, generations
appears to be increasing. Where some people have actively integrated online inter-
action in their daily routine, the Internet is still a mystery to others. Many people
are discouraged to provide personal data because there are no clear rules regarding
the privacy and rights of this data. For many users, the new opportunities created by
current technologies outweigh the downsides and it is unlikely that the upward trend
in the amount of shared data will bend down. Only the future can tell how these
changes will find a place in society.

11.5 Conclusion

The emergence of social media has generated an unprecedented growth of informa-
tion. The world has come to a state where everyone generates digital content and
everyone can and expects to be informed about the most relevant content for his indi-
vidual preference. The many traces that are left either explicitly or implicitly by each
individual can effectively be used to adapt retrieval and recommender systems to a
user’s preference. Personalised retrieval based on these collaborative annotations is a
big step forward in the history of information access.

The optimal relevance model is highly dependent on the formulation of the re-
trieval task. Variations in the context of the user, object scale or the way the data
is presented have a big impact on the optimal parameters of the prediction method.
Also, the characteristics of the collaborative annotations and the annotated content
should be taken into account when developing a personalised retrieval model. These
characteristics are determined by the system design, but can also be inherently related
to the data type.

Once we completely understand how the user’s preference is extracted from his
interactions with the data, it will be possible to accurately use this information for
personalised data delivery. Using data driven approaches we have studied how differ-
ent collaborative annotation methods can be used to learn the personal preference of
an individual. With this study, we have been able to reveal new personalisation op-
portunities and we have taken a step towards accurate personalised access to social
media.
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[58] Andreas Hotho, Robert Jäschke, Christoph Schmitz, and Gerd Stumme. Information
retrieval in folksonomies: Search and ranking. In ESWC 2006, LNCS 4011, pages 411–
426, Berlin, Heidelberg, 2006. Springer-Verlag.

[59] Zan Huang, Hsinchun Chen, and Daniel Zeng. Applying associative retrieval tech-
niques to alleviate the sparsity problem in collaborative filtering. ACM Trans. Inf. Syst.,
22(1):116–142, January 2004.

[60] Peter Ingwersen. Polyrepresentation of information needs and semantic entities: ele-
ments of a cognitive theory for information retrieval interaction. In SIGIR ’94: Proceed-
ings of the 17th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 101–110, New York, NY, USA, 1994. Springer-Verlag
New York, Inc.



Bibliography | 177

[61] Bernard J. Jansen, Amanda Spink, and Tefko Saracevic. Real life, real users, and
real needs: a study and analysis of user queries on the web. Inf. Process. Manage.,
36(2):207–227, March 2000.
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Summary
Personalised Access to Social Media

In the last few years the World Wide Web has developed from a static information
platform into a dynamic network. Because of this transition the Internet has acquired
a crucial role in our society. On many websites users can personally contribute in-
formation, ranging from short text messages to photos and videos. Users can see
the information contributed by others and respond to it. These social media actively
engage their community in the structuring of the collection by making use of collab-
orative annotation methods. Social interactions and the open character of the system
stimulate users to contribute annotations that are both useful for themselves and oth-
ers. Next to an improved description of the collection, collaborative annotations give
insight in the personal preferences of individual users. Through all interactions with
the data, users leave traces that can be exploited by the system to learn this preference
and personalise social media access for each individual.

Because collaborative annotation methods have only recently been used on a large
scale, the study of the data characteristics and personalised collection access based on
these annotations is still in its early days. This thesis contributes to the understanding
of social media and collaborative annotation data by studying various data filtering
tasks. Different types of collaborative annotations are used to adapt the collection
access to the preference of individual users. The deployed data filtering methods are
used as a means to learn about the factors that contribute to the accessibility of the
information in the system. This is done by selecting the model parameters so that
they relate to external factors that might influence the task. In this way, the variation
of the parameter settings reveals insights in the data that can be related to system
design or user behaviour. By iteratively changing the task definition and finding the
optimal model parameters, this thesis simultaneously finds task specific personalised
retrieval methods and increases the understanding of the underlying data.

The results in this thesis show that small variations in data type, user interface
and other system aspects appear to have large influence on the access possibilities of
social media. By increasing the understanding of collaborative annotation data and
the aspects that influence this data, this thesis has been able to improve existing data
filtering methods and propose new opportunities for effective personalised access to
social media.

The results presented in this thesis can be used in the development of personalised
social media access methods and gives insight in which system design choices result
in the most descriptive annotation data. Personalised data access has made it easier
for the user to discover interesting books, movies, touristic travel locations or other
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information. After the content has been observed by the user, the system can assist the
user in the annotation of the content, thereby the system learns about the preferences
of the user and it becomes easier for other users to retrieve the content. In this way,
this thesis contributes to a world where less time needs to be spent on the retrieval of
relevant information and the provided information is more accurately adjusted to the
needs of each individual.

Maarten Clements



Samenvatting

Gepersonaliseerde Toegang tot Sociale Media

In de afgelopen jaren is het Wereld Wijde Web ontwikkeld van een statisch in-
formatieplatform in een dynamisch netwerk. Door deze transitie heeft het Internet
een cruciale rol in onze samenleving verworven. Op veel websites kunnen gebruikers
zelf informatie toevoegen, uiteenlopend van korte tekstberichtjes tot foto’s en video’s.
Gebruikers kunnen de informatie van anderen zien en hier op reageren. Deze so-
ciale media betrekken hun gebruikers actief bij de structurering van de collectie door
gebruik te maken van gezamenlijke annotatiemethoden. Sociale interacties en het
open karakter van het systeem stimuleren gebruikers om annotaties toe te voegen die
zowel voor henzelf als anderen waardevol zijn. Naast een verbeterde beschrijving
van de collectie geven gezamenlijke annotatiemethoden ook inzicht in de persoon-
lijke voorkeuren van gebruikers. Doordat gebruikers bij alle interacties met de data
sporen achterlaten over hun voorkeuren, is het mogelijk geworden om de toegang tot
sociale media aan te passen aan de smaak van individuele gebruikers.

Omdat gezamenlijke annotatiemethoden pas recent op grote schaal toegepast
worden, staat de studie van de datakarakteristieken en persoonlijke collectietoegang
op basis van deze annotaties nog in de kinderschoenen. Dit proefschrift vergroot
het begrip van sociale media en gezamenlijke annotatiemethoden door verschillende
datafilteringstaken te behandelen. De data afkomstig van verschillende annotatieme-
thoden wordt gebruikt om de collectietoegang aan te passen aan de voorkeur van
individuele gebruikers. Hierbij worden de gebruikte filtermethoden gezien als hulp-
middel om te leren welke factoren bijdragen aan de toegankelijkheid van de infor-
matie in het systeem. Dit wordt gedaan door de parameters van het model zo te
kiezen, dat ze gerelateerd zijn aan externe factoren die de taak kunnen bëınvloeden.
Op deze manier geeft het varieren van de parameters inzichten in de data die gerela-
teerd kunnen worden aan systeemontwerp of gebruikersgedrag. Door beurtelings de
definitie van de taak te veranderen en de optimale parameterinstellingen te zoeken,
vindt dit proefschrift gelijktijdig taak afhanklijke gepersonaliseerde zoekmethoden en
een beter begrip van de onderliggende data.

De resultaten in dit proefschrift tonen aan dat kleine variaties in datasoort, ge-
bruikers interface en andere systeemaspecten grote invloed blijken te hebben op de
toegangsmogelijkheden van sociale media. Door het begrip van gezamenlijke anno-
tatiedata en de aspecten die deze data bëınvloeden te vergroten, heeft dit proefschrift
bestaande datafilteringsmethoden kunnen verbeteren en nieuwe kansen gevonden
voor effectieve persoonsgebonden toegang tot sociale media.
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De resultaten gepresenteerd in dit proefschrift kunnen gebruikt worden bij de
ontwikkeling van persoonsgebonden toegangsmethoden voor sociale media en geven
inzicht in de ontwerpkeuzes die resulteren in de meest bruikbare annotatie data. Per-
soonsgebonden datatoegang maakt het voor de gebruiker makkelijker om interessante
boeken, films, toeristische reisbestemmingen of andere informatie te ontdekken. Na-
dat de inhoud door de gebruiker gezien is kan het systeem de gebruiker begeleiden bij
de annotatie van de data, waardoor het systeem leert over de voorkeuren van de ge-
bruiker en andere gebruikers de inhoud gemakkelijker terug kunnen vinden. Op deze
manier draagt dit proefschrift bij aan een wereld waarin minder tijd besteed hoeft te
worden aan het vinden van relevante informatie en de aangeleverde informatie beter
gericht is op de behoeften van elk individu.

Maarten Clements



Curriculum Vitae

Maarten Clements was born in Barendrecht, The Netherlands, on August 25, 1981.
After obtaining his high school degree from Farel College in Ridderkerk in 1999, he
started a bachelor study in Electrical Engineering at the Technical University in Delft.

During his bachelor, Maarten gained interest in data mining and pattern discov-
ery which motivated him to follow the Media and Knowledge Engineering variant
of the Electrical Engineering master. In this master program, Maarten worked for 3
months on an internship at British Telecom in Ipswich (England, 2004) with the goal
to develop a system that automatically detects event-based clusters in home videos.
In 2006, after taking part in the biomedical minor program, Maarten started his the-
sis project in the Bioinformatics group. With his thesis, Maarten improved the un-
derstanding of the baker’s yeast organism by combining transcription factor binding
information with gene expression profiles in a unified method to detect cooperating
genes.

In 2006, the emerging dynamic field of web2.0 and recommendation technology
motivated Maarten to start his PhD. project, of which the result is presented in this
thesis. This project, supervised by Prof. dr. ir. Marcel J. T. Reinders and Prof. dr. ir. Arjen
P. de Vries, was partially executed at the Technical University in Delft and partially at
CWI, Amsterdam. In 2009 Maarten spent 3 months at Yahoo! Research in Barcelona
(Spain, 2009) to work on the analysis of tag semantics. The results of this project are
presented in Chapter 9 of this thesis.

In 2010 Maarten started working as a research engineer at TomTom, to improve
Point Of Interest discovery in navigation systems.



A THOUGHT

People always tell you to think outside the box, but even when you think well
outside the box, there will always be a larger box to encompass all your thoughts.

One might however envision a spherical shaped box which as we know provides the
maximal volume to surface ratio, giving rise to the optimal freedom of thought

without running into the boundaries of imagination. Also, one does not risk getting
stuck in one of the corners of his mind.


